
Chapter 24

Simulation Methods

Mihir Arjunwadkar, Simulation Methods, in: P. V. Panat, Thermodynamics and Statistical
Mechanics, Narosa Publishing House (2008).

The focus of this chapter is computer simulation methods in statistical physics. We first
present a somewhat wider perspective on modeling, simulation, computation, and the
two principle simulation methodologies of statistical physics. In the rest of the chapter,
we discuss these two methodologies in their most basic form, and illustrate them through
exploratory case studies.

The bibliography section at the end of this book lists select resources that may be
useful as more comprehensive introductions to the topics discussed in this chapter. This
list is in no way representative of the enormous literature on simulation in physics. We
would also like to point the interested reader to the enormous number of resources on
the topic, such as tutorials, lecture notes, codes, etc., that is available in the public
domain over the internet.

24.1 Simulation in Statistical Physics

24.1.1 Reality, Models, Mathematics

Simply stated, a model is a description of a relevant aspect of the system or phenomenon
of interest. The key step of the modeling process is that of making bold, meaningful,
and useful abstractions of reality — This is the step that separates what is of interest
from what is not, and consequently simplifies the description and the analysis that
follows. Familiar abstractions in Physics include, e.g., the notion of a point particle.
The scientific methodology is driven by an urge to describe reality rationally through
the use of such models, the need to make predictions about it in a quantitative fashion,
and the process of hard experimental validation of all models against reality. Indeed, a
model or a theory is considered scientific only if it is manifestly falsifiable — Falsifiability
of a model means that it is possible to make experimentally testable predictions from
the model and, if these predictions turn out to be inconsistent with reality, then that
could, in principle, invalidate the model.

If we are willing to ignore deep philosophical questions about the nature of reality
or the nature of understanding, we might even go as far as saying that models represent

1

http://cms.unipune.ernet.in/~mihir
http://www.narosa.com/books_display.asp?catgcode=978-81-7319-937-0
http://www.narosa.com/books_display.asp?catgcode=978-81-7319-937-0

the state of our understanding of reality. For example, celebrated theories of Physics
that represent our current state of understanding about the physical reality could be
seen as mathematical models of physical reality. These theories have historically evolved
through the same process of falsification, and through a tight handshake between the
theoretical and experimental approaches.

Mathematics turns out to be a powerful, expressive, and economical language for
describing reality in most branches of the scientific enterprise. In any case, the need for
a quantitative understanding makes the use of Mathematics inevitable. As a result, we
end up with mathematical models of reality.

24.1.2 Computation and Simulation

Once a mathematical model of a system under study is formulated, the next and in-
evitable task is to extract meaningful information from the model and to make predic-
tions about the behaviour of the underlying system. The purely analytical approach
to elucidating mathematical properties of a model is conventionally called theory (as
opposed to experiment). In this approach, one invariably needs to resort to computa-
tion of some sort or the other, either to gain insights for analytical work, or because
purely analytical treatment of a model becomes increasing unwieldy as a function of the
complexity and sophistication of the model.

A computational simulation is a form of computation which one could meaningfully
think of as imitating the behaviour of the underlying system, and not just as the solution
of, say, a bunch of ordinary differential equations.

The use of computation-based methodologies has been on the rise over the past few
decades because of the ever-increasing availability of inexpensive computing power. Be-
cause of its somewhat specialized nature, computation and simulation are sometimes
considered a third scientific methodology, besides theory and experiment. Indeed, com-
putation can be seen to extend the power of theory beyond what is possible by purely
analytical means, and to help bridge the gap between theory and experiment. Moreover,
in problems where an accurate, well-validated model of reality is available, simulation
can, at times, almost entirely replace an actual experimental investigation. Theory,
computation, and experiment thus form a tightly-linked trio of scientific methodologies.

24.1.3 Principal Simulation Methods of Statistical Physics

To a good approximation, it could be said that simulation methodologies in Statistical
Physics come in two flavours, deterministic and stochastic. Molecular dynamics (MD)
simulations belong, predominantly, to the deterministic category. At the other end of
the spectrum of simulation methods are what are called the Monte Carlo (MC) methods,
which are stochastic by nature. These two methodologies in their most basic form will
be discussed in the rest of this chapter.

24.2 Molecular Dynamics (MD)

The basic idea of MD is to explore the behaviour of a physical system by computing,
with sufficient accuracy, the trajectories of individual particles constituting the system.
Along the way, relevant information about the system is accumulated, which is used for
computing physical quantities as statistical averages along the trajectory. The formal
basis of why MD works for statistical mechanics problems is the (often assumed) ergodic

2

hypothesis, i.e., equivalence of ensemble and time averages, which allows computing
ensemble average of physical quantities of interest as time averages along a sufficiently
long phase space trajectory of the system. As a side remark, note that the meaning of
particle, as always, depends on the context and on how the system is being modeled:
It could mean an individual atom, a molecule, a group of atoms that form a chemical
group that is part of an even larger molecule (a protein, e.g.), or an entire star.

In this section, we will explore the MD method in its most basic form. With a view
of understanding the behaviour of the method itself as thoroughly as possible, we have
restricted the discussion in this section to elementary constant energy MD simulations.
We note here in passing that constant energy MD (together with a constant number
of particles) corresponds to a microcanonical ensemble, whereas constant temperature
MD (again with a constant number of particles) corresponds to a canonical ensemble.
Many important directions (e.g., constant temperature MD simulations) are not even
touched upon in this introductory chapter – we refer the reader to more comprehensive
texts such as those listed in the bibliography section at the end of this book.

24.2.1 Equations of Motion

The molecular dynamics method attempts to numerically integrate the equations of mo-
tion of a system of N interacting particles. In usual notation, let us write the equations
of motion as

mi
d2~ri
dt2

= ~Fi, (24.1)

where i = 1, . . . , N is the particle index. This Newtonian form of the equations of
motion is not binding; any other convenient form (say, Lagrangian or Hamiltonian)
of the equations of motion is equally alright to work with. We restrict ourselves to
conservative systems and velocity-independent forces for the sake of this chapter, which
makes the force ~Fi a function of only the particle positions (~r1, ~r2, . . . , ~rN). To make
things simpler, we will also assume that no external forces act on this system.

The Lennard-Jones Potential

For concreteness, let us consider a system of particles interacting with one another via
the well-known Lennard-Jones potential. A conventional forms for this potential is

V (~r1, ~r2, . . . , ~rN) =
N∑
i=1

i−1∑
j=1

v(rij),

where v(rij) = 4ε

{(
σ

rij

)12

−
(
σ

rij

)6
}
, (24.2)

and rij = |~ri − ~rj | is the distance between particles i and j.
A number of characteristics of this potential are worthy of note. First of all,

this potential has a pairwise additive form. Further, it depends on particle positions
(~r1, ~r2, . . . , ~rN) only through the N(N − 1)/2 pairwise distances |~ri − ~rj |. As a conse-
quence, it respects the homogeneity (translational invariance) and isotropy of the space
in which the particles lives. For any pair of particles, the potential has a shallow mini-
mum at distance

σ∗ = 2
1
6σ. (24.3)

3

ε σ∗ m ρ
√
mσ2/4ε

K Å amu g/cm3 s

He 10.80 2.57 4.002602 0.1785 8.58 × 10−13

Ne 36.68 2.79 20.1797 0.901 1.13 × 10−12

Ar 120.0 3.38 39.948 1.784 1.07 × 10−12

Kr 171.0 3.6 83.8 3.74 1.38 × 10−12

Xe 221.0 4.1 131.29 5.8971 1.73 × 10−12

Table 24.1: Lennard-Jones parameters for noble gas systems. The last two columns list,
respectively, the density ρ at 293 K, and the characteristic time scale associated with
each system. The units used in this table do not conform to a single system of units
(such as SI), but are commonly used because of their convenience in the atomic domain.

For distances less than this, the interactions become sharply repulsive, whereas for
distances larger than this, the interactions are weakly attractive. The characteristic
energy and length scales in this potential are, respectively, 4ε and σ; values of these
parameters for a number of noble gases are given in Table 24.1.

The Lennard-Jones force −∇iV (~r1, ~r2, . . . , ~rN) on the i particle can be written as

~Fi(~r1, ~r2, . . . , ~rN) =
N∑

j(6=i)=1

f(rij)(~ri − ~rj),

where f(rij) = 6
4ε
σ2

{
2
(
σ

rij

)14

−
(
σ

rij

)8
}
. (24.4)

System of Units for Simulation

When setting up a MD simulation, it is not very convenient to work in standard mea-
surement units (such as Kelvin, Joule, meter, or kilogram) for at least two reasons:

1. From a computational perspective: Real numbers (real as in mathematics) with
a fractional part are represented in typical modern digital computers as floating-
point numbers that allow a finite and fixed amount of storage space per number,
both in the significand (also called mantissa) and the exponent. The set floating-
point numbers (and the resulting finite-precision arithmetic) has many peculiar
characteristics (more about this later in the chapter).

If we choose to stick to, say, SI units, then numerical magnitudes of most quantities
are likely to be either too small or two large for the finite-precision arithmetic to
handle in a meaningful fashion. This usually results in a catastrophic loss of
precision, making the numerics unreliable.

2. From a purely physical perspective, it is always a good idea to work with a set of
units that is based on the natural length/time/energy/mass scales in the problem.
This way, the results of an analysis or computation become independent of the
specific details of a system. The mathematical reason for this is that such choice
of units transforms the equations of motion into a generic, dimensionless form.

For the Lennard-Jones potential (as applied to noble gases, for example), this
means that if the set of simulation units is based on the natural scales of 4ε

4

(energy), σ (length), and m (mass), then one single analysis or computation would
become applicable equally to all noble gases (it would just need to be rescaled for
the specific values of these quantities for a specific system).

Example. For a Lennard-Jones system, the above choice of amounts to setting 4ε = σ = m = 1
in Eq. 24.1–24.4. This choice also implies

√
mσ2/4ε as the unit of time (See Table 24.1 for

typical values of this time scale). Another conventional choice of units is m = 1, ε = 1, and
σ∗ = 1.

Example. Consider the equation of motion of a one dimensional simple harmonic oscillator

d2x

dt2
(t) = − k

m
x(t). (24.5)

There is no natural length scale in this problem. However, the natural time scale in this system
is ω−1, where ω =

√
k/m is the frequency of oscillation of the simple harmonic oscillator.

24.2.2 Integrating Equations of Motion: the Verlet Algorithm

Having obtained the equations of motion of a system of particles, the next task is to
solve them numerically to get particle trajectories. One of the simplest, robust, and
hence popular, method for numerically integrating equations of motion (Eq. 24.1) is the
Verlet algorithm. In the present context, the term “numerical integration of a differential
equation” simply means obtaining the values of positions ~ri at time t+δ from their values
at time t. The Verlet scheme is obtained by Taylor-expanding a particle’s trajectory
~r(t+ δ) both forward and backward in time upto order 3 in δ; i.e.,

~r(t+ δ) = ~r(t) +
δ

1!
~v(t) +

δ2

2!
~a(t) +

δ3

3!
~b(t) +O(δ4)

~r(t− δ) = ~r(t)− δ

1!
~v(t) +

δ2

2!
~a(t)− δ3

3!
~b(t) +O(δ4),

where ~v and ~a stand, respectively, for the velocity and the acceleration the particle, and
~b for the third derivative of ~r with time. With some rearrangement after adding the
above two expansions, we obtain the expression for the Verlet iterative solver:

~r(t+ δ) = 2~r(t)− ~r(t− δ) + δ2~a(t). (24.6)

It is easy to see that the error (per time step of δ) in the resulting trajectory is O(δ4),
that is, of the order of the first neglected term in the expansions above.

To use this recurrence operationally, one needs to specify two initial position values
~r(0) and ~r(δ) along a trajectory, from which the trajectory is computed forward in time
using the above recurrence relation given a fixed and sufficiently small value of the time
step parameter δ. The meaning of “sufficiently small” needs to be decided on a case by
case basis by assessing the numerical stability of the Verlet method (see Figure 24.1 and
the accompanying discussion), and from physical considerations (such as the allowable
extent of numerical non-conservation of total energy).
Example. Consider the one dimensional simple harmonic oscillator (Eq. 24.5). Given two initial
values at t = 0 and δ, the corresponding Verlet recurrence takes the form

x(t+ δ) =
(

2− δ2 k
m

)
x(t)− x(t− δ),

5

and generates the trajectory values x(0), x(δ), x(2δ), Velocities would need to be computed,
for t = δ, 2δ, . . . as

v(t) =
x(t+ δ)− x(t− δ)

2δ
.

The Velocity Verlet Algorithm

Often times one is interested in computing the values of particle velocity along the
trajectory. The Verlet algorithm in the form developed above does not directly incor-
porate this computation in its structure. Instead, one has to resort to some sort of
finite-difference approximation for the velocity, such as

~v(t) =
~v(t+ δ)− ~v(t− δ)

2δ
, (24.7)

in order to compute velocities.
A variant of the Verlet algorithm, called the velocity Verlet method, resolves this

situation by setting up a double recurrence in position and velocity. Given initial con-
ditions ~r(0) and ~v(0), this modified recurrence takes the form

~r(t+ δ) = ~r(t) + δ~v(t) +
δ2

2
~a(t)

~v(t+ δ) = ~v(t) +
δ

2
(~a(t) + ~a(t+ δ)) . (24.8)

Here, ~a(t+ δ) is computed from the updated positions ~r(t+ δ).
Example. Consider the one dimensional simple harmonic oscillator (Eq. 24.5) again. Given
initial values of x and v at t = 0, the corresponding Velocity Verlet recurrences take the form

x(t+ δ) =
(

1− δ2

2
k

m

)
x(t) + δv(t)

v(t+ δ) = v(t)− δ

2
k

m
(x(t) + x(t+ δ)) . (24.9)

and generates the phase-space trajectory (x(0), v(0)), (x(δ), v(δ)), (x(2δ), v(2δ)),

The Verlet Method: Energy Conservation and Numerical Stability

The energy conservation behaviour of the Verlet method (in its numerical stable regime)
is a consequence of the time-reversal invariance of the Verlet recurrence; i.e., the form of
the Verlet recurrence (Eq. 24.6) remains unchanged under the transformation δ → −δ.

Example. Consider the velocity Verlet method (Eq. 24.9) as applied to the one dimensional
simple harmonic oscillator (Eq. 24.5) again. The behaviour of the Velocity Verlet solver as
a function of the time step parameter δ is illustrated in Figure 24.1 for the simple harmonic
oscillator with k = m = 1. For δ ≤ 0.1, we see that the computed solution is quite close to
the true solution cos(t), the phase-plane curve traced by the oscillator is indeed a circle with
unit radius, and the total energy (x2 + v2)/2 is nicely conserved (within numerical fluctuations
that are not visible on the scale of the y-axis), We see that the numerical solution, although it
remains oscillatory, starts differing from the exact solution increasingly as δ increases. This is
also reflected as a progressively shrinking and distorting phase-plane curve, and progressively
larger fluctuations in the total energy (which should ideally remain constant at the value of 1/2).

6

Beyond δ = 2, the Verlet recurrence (Eq. 24.9) produced unphysical, non-oscillatory solutions
(not shown in the figure). Whether this behaviour with respect to the time step is a numerical
artifact can only be answered through a formal stability analysis; see below.

It is important to assess the numerical stability of a differential equation solver with
reference to the differential equation of interest. Such analysis provides, in the least, an
upper bound on the allowable time step δ. A full treatment of this topic is not possible
within the scope of this chapter; however, we discuss below how this could be done for
the Verlet solver (Eq. 24.6) as applied to the simple harmonic oscillator.

Example. Let us write the simple harmonic oscillator equation in the form

d2x

dt2
(t) = −ω2x(t).

Since we are interested in oscillatory solutions to this equation (ω2 > 0), let us write an ansatz
of the form

y(t) = y0e
iαt

for the discrete solution y(t) of the Verlet recurrence (Eq. 24.6)

y(t+ δ) = (2− δ2ω2)y(t)− y(t− δ).

This will give us a handle over how far the solution y of the Verlet recurrence differs from the
true oscillatory solution (of the equation of motion) of the form x(t) = eiωt, as a function of
the time step δ. Here, ω is the frequency of oscillation of the true solution x(t) to the original
equation of motion, and α is to be interpreted as the frequency of the solution y(t) to the Verlet
recurrence. Substituting this ansatz in the Verlet recurrence, we get

y0e
iαt
(
eiαδ − (2− ω2δ2) + e−iαδ

)
= 0,

which implies
eiαδ − (2− ω2δ2) + e−iαδ = 0.

With some algebraic manipulations, this reduces to the identity

ω2δ2 = 4 sin2 αδ

2
.

Clearly, there is no real value of α that would satisfy the above identity when δ2 > 4/ω2. This
analysis shows that

1. as observed in the numerical results, ωδ = 2 represents the boundary between physical
(oscillatory) and unphysical (non-oscillatory) solutions of the Verlet recurrence, and

2. this observed behaviour is not an artifact of the finite-precision numerics that was used
to compute the solutions.

From purely physical considerations it could be argued that the choice of the time step
parameter δ should be such that the fastest motions in the system are adequately repre-
sented in the numerical solution. Thus, e.g., when choosing a value for δ for the velocity
Verlet algorithm, the typical velocity magnitudes expected to occur in the system be-
ing simulated should also be considered. These magnitudes would depend on, amongst
other things, the initial velocities, and the typical magnitudes of forces/accelerations
expected to occur in the system.

7

Figure 24.1: Behaviour of the velocity Verlet algorithm for the simple harmonic oscilla-
tor. The four rows correspond to δ = 0.1, 0.5, 0.95, 1.9 respectively. For each row, the
first column compares the computed solution (circles) for x(t) with the exact solution
cos(t) (continuous curve), the second column plots the energy ellipse in the x–v phase
plane, and the third column plots total energy (x2 + v2)/2 as a function of t.

8

24.2.3 Schematics of a Bare-Basics MD Simulation

Having discussed the key elements of a MD simulation, let us return once again to a
system of interacting particles (e.g., via the Lennard-Jones potential). Assuming velocity
Verlet, the schematic structure of a bare-basics MD simulation is as follows:

1. Choose a convenient system of units; see discussion in Sec. 24.2.1. Choose param-
eters that define the system, such as the dimensionality D of the space, number
N of particles in the system. Also choose values of simulation parameters such as
the time step size δ, the total number Nδ of such steps, etc.

2. Specify the initial conditions for this system of N particles: For velocity Verlet,
this means the initial positions ~ri(0) and the initial velocities ~vi(0), i = 1, . . . , N .

3. For t = δ, 2δ, . . . , Nδδ:

• compute new positions ~ri(t) and velocities ~vi(t) of all the particles i =
1, . . . , N from the previous positions ~ri(t − δ) and velocities ~vi(t − δ) using
the velocity Verlet recurrence (Eq. 24.8).
• store this updated information for later analysis, or compute any relevant

quantities such as the total kinetic and potential energies, etc.

By construction, this simulation conserves the number of particlesN and the total energy
E. The volume of the system is not conserved in the present bare-basic scheme. Constant
volume simulations need the system to be enclosed in a fixed-volume enclosure; this
feature will be added in Sec. 24.2.5 using a device called periodic boundary conditions.

This all needs to be implemented using an appropriate programming language (such
as Fortran, Scheme, Haskell, C, C++, Java, ...) or a scripting/computing envi-
ronment (such as python, matlab, R, ...). The key to good computational work is
the spirit of self-learning and exploration. We thus leave the programming-related de-
tails for the reader to fill-in. A variety of books on this subject already include enough
details on programming and, oftentimes, actual codes1. A selection of such resources is
included in the bibliography section at the end of this book.

24.2.4 Breathing-Mode Oscillations of Highly Symmetric Clusters

Having gained some insight into the behaviour of the Verlet solvers, let us explore the
dynamics of a bit more complex system, i.e., highly symmetric Lennard-Jones clusters.
Such systems whose physics is quite well-understood and where one knows what to
expect at least qualitatively, are highly valuable as test cases for establishing the sanity
of the simulation system and for validating the computer programs for the simulation.
They often provide unexpected insights into the behaviour of the simulation system (the
computer, programming language used, simulation codes, etc., taken as a whole).

Specifically, let us consider a cluster of 4 particles that are confined to the x–y
plane, and interact with one another via the Lennard-Jones potential (Eq. 24.2). Our
choice of simulation units is defined by 4ε = σ = m = 1 (see Sec. 24.2.1 and Table
24.1). For initial positions, let us place them at the corners of a square with side length
a = 0.89 × σ∗, centred at the origin, and sides parallel to the coordinate axes. Let us

1A suite of Fortran codes that accompanied the famous book Computer Simulations of
Liquids by Allen and Tildesley (Oxford University Press, 1987) is available at the website
http://www.ccp5.ac.uk/librar.shtml#ALLENTID

9

set the initial velocities to zero. For this problem, let us choose a time step δ = 0.05 (in
units of

√
mσ2/4ε).

As noted before, the Lennard-Jones potential is invariant under translations and
rotations of the system, i.e., it respects these two symmetries of the space in which the
system lives. It is clear from the symmetry of our initial state that all forces in this
system act along the diagonals of the square. As such, our four particles will always
be placed at the corners of a square at all times, and the dynamics of this system is
completely determined by the initial size a of this square. For example, if a � σ, then
all pairwise interactions will be highly repulsive, leading to a sharp explosion, with the
four particles flying away to infinity along the four diagonal directions. If a � σ, then
the weakly attractive interaction would lead to an initial collapse of the system followed
possibly by an explosion. For a ≈ σ∗, we expect to see stable breathing-mode oscillations
of this square configuration. Indeed, these expectations are fulfilled as seen in a series
of simulation snapshots in Figure 24.2 for the oscillatory regime.

Our Visualization Scheme. Our convention for visualizing instantaneous configurations of
Lennard-Jones particles confined to a two-dimensional plane is as follows: we represent each
Lennard-Jones particle by a circle of radius σ∗. With this convention, overlapping and non-
overlapping pairs of circles respectively represent pairwise repulsive and attractive interactions.
The centre of each circle is emphasized with a black dot, and the gray trail represents a short-
time trace of this black dot over the immediate past. Depending on the particle trajectories,
this trace gets smeared or erased.

Conservation of Energy, Momentum, and Angular Momentum

In Figure 24.3, we see that the total energy of this system is fairly well-conserved – i.e.,
within numerical fluctuations. Although these fluctuations in total energy appear quite
insignificant on the scale of variation of the kinetic and potential energies taken together,
they are very much present, and this is the effect of the finiteness of the time step δ.
Accordingly, we expect these fluctuations to diminish at smaller values of the time step
δ. In the example of Figure 24.3, the range of fluctuations reduces from about 25% of the
mean value at δ = 0.05 to about 1% at δ = 0.01. We also expect conservation of linear
and angular momentum for this system. This expectation is also fulfilled extremely well
(these results are not shown).

A Finite-Precision Surprise

Ground realities of present-day computing invariably hit hard if we continue the sim-
ilar simulations for longer time. Starting from highly symmetric initial configurations
with appropriately spaced particles with zero velocities, we expect stable breathing-
mode oscillations for our system to continue indefinitely. However, at some point in
time, we often see our four particles eventually freeing themselves from the symmetric
configuration, their motions becoming randomized and unpredictable.

Let us explore the dynamics of a 6-fold symmetric initial configuration of 7 particles
in two dimensions, with one at the centre and the rest six sitting at the vertices of
a regular hexagon. Let us set the nearest-neighbour pairwise distance in the initial
configuration to 1.2σ∗ and all the initial velocities to zero as before. We thus expect
stable breathing-mode oscillations of this cluster, with the total force on the particle at
the centre to remain exactly zero at all times, and the remaining six particles oscillating

10

Figure 24.2: Snapshots of an oscillating Lennard-Jones square at t =
0.05, 0.75, 1.8, 2.5, 3.2, 3.55 (rowwise from top left to bottom right). See discussion in
the text and the note on the visualization scheme used.

11

Figure 24.3: Energy conservation and the time step δ. Dashed curve: kinetic energy,
dotted curve: potential energy, solid curve: total energy. All quantities are per particle,
plotted as functions of time t. Left-hand plot: δ = 0.05, right-hand plot: δ = 0.01.
Notice reduction of fluctuations in total energy at the smaller value δ = 0.01.

in radial directions in a synchronized fashion. The time step parameter δ = 0.05 for this
illustration.

Figure 24.4 shows snapshots of the initial dynamics of this system, where we indeed
see stable breathing-mode oscillations of the kind depicted in this figure. These oscilla-
tions continue upto a total time t of about 20 units, or 14 cycles of oscillation. These
oscillations are also reflected in the initial part of the energy versus time plot (Figure
24.6). We also notice fairly good energy conservation (i.e, to within small numerical
fluctuations) all throughout the simulation.

However, after a time of about 24 units, we start noticing something strange in
the energy versus time plot: the nice oscillatory behaviour of the kinetic and potential
energies has disappeared, and is replaced by some sort of patternless, seemingly random
variations that still conserve the total energy. In fact, simulation snapshots (Figure 24.5)
clearly show that the motions of individual particles have become visibly desynchronized
and randomized.

What is causing this strange behaviour? Clearly, the qualitative dynamical be-
haviour we expected based on the physics for this system is not at all wrong or unjusti-
fied. The culprit for the observed randomization, as it turns out, is the peculiar way in
which numbers with a fractional part are represented in present-day computing systems
(i.e., the hardware, the operating system, programming language used, actual codes,
etc., considered as a whole), and the corresponding finite-precision arithmetic of these
numbers.

A Quick Detour into Finite-Precision Arithmetic The finite-precision representation of numbers

12

Figure 24.4: Snapshots of a hexagonal oscillating Lennard-Jones cluster at t =
0.1, 0.6, 0.9, 1.1, 1.7, 2.0 (rowwise from top left to bottom right).

13

Figure 24.5: Snapshots of the (randomized) Lennard-Jones hexagon at t =
24, 25, 27.5, 30, 35, 40 (rowwise from top left to bottom right).

14

Figure 24.6: Energy conservation for the hexagonal cluster of Figures 24.4 and 24.5.
Top curve: kinetic energy, bottom curve: potential energy, middle near-flat curve: total
energy. All quantities are per particle, plotted as functions of time t. Notice the clear
distinction between the oscillatory regime (t < 24) and the randomized regime. Also
note that the total energy is conserved equally well in both regimes.

with a fractional part used in present-day computing systems is of the form

d0.d1 . . . dp−1 × βe,

which stands for the real number(
d0 + d1β

−1 + . . .+ dp−1β
−(p−1)

)
βe.

Here, β is the (integer) base of the representation (typically β = 2), 0 ≤ d0, d1, . . . , dp−1 < β

are the integer digits of the real number being represented in this manner, p is the precision
parameter, and e is the exponent that takes integer values between some emin and emax. The
size of the storage space required per number depends on the parameters of the representation,
i.e., β, p, emin, emax. It is clear that not all real numbers can be represented in this fashion. The
resulting set of numbers that can be represented in this fashion, called floating-point numbers,
is necessarily a discrete set, unlike the (mathematical) set of real numbers, and has non-uniform
distribution (specifically, there are equal numbers of floating-point numbers in intervals defined
by successive powers of β). Floating-point representations employed by most present-day com-
puting systems conform to the IEEE standard 754 for floating-point arithmetic. A consequence
of the finite precision is the round-off error that propagates through finite-precision arithmetic
operations. Because of this, the result of a computation – e.g., potential and force computation,
Verlet update, etc. – depends on the order in which arithmetic operations are performed, unlike
in exact arithmetic. All books on numerical analysis/algorithms discuss this topic in varying
detail; a few related resources are listed in the bibliography section at the end of this book.

There are interesting consequences of this. For example, the dynamics of our 4-atom
system in the previous example resulting from the same initial square, but now rotated

15

by (say) 45◦ about the origin, would conceivably be different. Similarly, the same initial
square configuration, now translated away from the origin, could be expected to lead
to a very different dynamics: This is because of the fact that the set of floating-point
numbers is a discrete set that has a non-uniform distribution and is symmetric only
around the value 0. Thus, the rotational and translational invariance of our physical
system need not always be respected by the finite-precision arithmetic employed for
simulation.

If the idea is to simulate the dynamics of a specific system in a detailed manner and
as accurately as possible, then of course such embarrassingly unphysical randomization
is an unwanted artifact of the simulation system. A saving grace, from a statistical
mechanical perspective (at least for a class of equilibrium problems), is that such ran-
domization emerging from a completely unphysical source actually seems to help attain
equilibrium despite the initial conditions, so long as it does not violate any constraints
or conservation principles applicable to the simulation.

It must be understood that such artifacts of the finite-precision arithmetic are highly
dependent on how the simulation is implemented in a programming language or a com-
puting environment, initial conditions, the value of simulation parameters such as the
time step δ, etc. The possibility of encountering such seemingly strange artifacts must
always be kept in mind.

24.2.5 Simulating Extended Systems

From a statistical mechanical perspective, the interest is often focussed on understanding
(or predicting) properties of extended systems consisting of large (technically, infinite)
number of particles, unlike the small finite systems we explored in the previous section.
On the other hand, simulations can only be done for a finite number of particles. The
grand challenge in the simulation domain, then, is to infer the behaviour of a system
in the thermodynamic limit from finite-size simulations. This is usually a hard and a
tedious task.

Eliminating Surfaces Using Periodic Boundary Conditions

The least that could be done to finite system to make it resemble an infinite system
is to eliminate all surfaces – Extended systems have no surfaces. The simplest way of
incorporating this characteristic of extended systems into a simulation is a device called
periodic boundary conditions (PBC).

For example, a line segment of (finite) length L has two boundaries – its left and
right end points. PBC turn this line segment into a circle of circumference L by joining
together the two end points. Mathematically, this is equivalent to a x modulo L opera-
tion, i.e., remainder of the division of x by L, which effectively maps all real numbers x
onto points on this circle. The same transformation, when applied to a square, turns it
into a two-dimensional torus. It could be extended to rectangular regions in any number
of dimensions by applying the modulo L transformation to each orthogonal coordinate
direction.

As the space in which a physical system lives gets wrapped around in this fashion, the
interactions between particles also need to be wrapped around. This is especially true
when the range of interactions (e.g., a few σ for Lennard-Jones particles) is comparable
to the length L of the “simulation box” – This possibility is typically realized when the
density ρ of the physical system being simulated is high enough, and the simulation box

16

Figure 24.7: Periodic boundary conditions (PBC) visualized as the simulation box (cen-
tral square) and the first shell of its images. Under PBC, particles leaving the simulation
box from the right (top) wall re-enter from the left (bottom) wall and vice versa. A par-
ticle is considered to interact not only with all particles in the simulation box, but with
all image particles as well. By construction, all image particles mimic their counterpart
in the simulation box at the centre.

size L is chosen to match this density value for a fixed number N of particles in the
simulation.

A conventional way of visualizing this wrapping-around is to consider the simulation
box and its “images” which are translated from itself by integer multiples of L along all
coordinate directions (see Figure 24.7). In two dimensions, e.g., the first shell of images
consists of 8 images which are translations of the simulation box by translation vectors
(−L,−L), (−L, 0), (−L,+L), (0,+L), (+L,+L), (+L, 0), (+L,−L), and (0,−L). The
wrapping-around of interparticle interactions is then taken into account by considering
the interaction of each particle in the simulation box not only with all other particles in
the simulation box but also with the images of all particles in a shell of images of the
simulation box.

PBC are typically implemented in MD simulations by identifying, at each time step,
the particles that crossed the boundaries of the simulation box during that time step,
and bringing them back from the opposite face. Specifically, if coordinate values within
the simulation box lie between −L/2 and L/2 along each coordinate direction, then
this prescription amounts to replacing, e.g., x by either x − L or x + L depending on
whether x > L/2 or x < −L/2. This way of implementing PBC (instead of the formal
modulo L operation) assumes that the time step δ is reasonably small enough; i.e., the
fastest-moving particle in the system travels at most a small fraction of the size L of
the simulation box.

To accommodate PBC in the schematics of Sec. 24.2.3, one needs to specify addi-
tionally the simulation box size L and the number of image shells around the simulation
box. Typically, the density ρ of the physical system being simulated (see, e.g., Table
24.1) is used to determine L by fixing the number of particles N in the simulation.

With the inclusion of PBC, our MD simulations will now conserve the volume V

17

of the system, in addition to the particle number N and the total energy E. Such
microcanonical simulations are sometimes referred to as constant NV T simulations.

Periodic Boundary Conditions Violate Isotropy

A side-effect of incorporating PBC in a simulation must be noted: While the transla-
tional invariance in a system remains unbroken in presence of PBC, the PBC do break
the isotropy (or rotational invariance) of a system. As a consequence, unlike in the
simulations of the previous section which did not incorporate PBC, the total angular
momentum is not a conserved quantity any more (even if the original physical system
is isotropic). We thus expect to see large fluctuations in it. However, over length scales
far smaller than the simulation box length L, we could expect that the system would
still appear locally isotropic.

Approach to Equilibrium

We end this section with the example of a simulation of an extended system as imple-
mented through PBC. Broadly speaking, thermodynamic equilibrium is characterized
by stationarity (i.e, time-independence) of the probability distributions describing the
system. This implies that static properties of the system also become time-independent.
In simulations, whether a system has attained equilibrium or not can thus be judged
by monitoring the time evolution of a static property of the system. For example, for a
two-dimensional system, we may define a quantity of the form

h =
1
2

(hx + hy) , where

hx =
∫
P (vx) log(P (vx))dvx, and

hy =
∫
P (vy) log(P (vy))dvy, (24.10)

and P (vx) is, e.g., the probability distribution function (PDF) of the x-components
of particlewise velocities. Figure 24.8 shows a possible behaviour of this quantity as
the system attains equilibrium. From the figure, it is clear that this quantity becomes
stationary fairly quickly for the initial conditions used (see below), after just about 100
time steps. It must be understood that numerical simulations with finite systems will
always involve fluctuations.

This particular simulation consisted of N = 100 Lennard-Jones particles confined to
a two-dimensional box with PBC. The simulation box length L was determined from this
N and an arbitrary density value of ρ = 0.75 in simulation units (i.e, on an average 0.75
particles per unit σ2). As initial positions, these 100 particles were placed on a regular
square grid over the simulation box. The time step δ was 0.005. Initial velocities were
randomly chosen as +4 or -4 (this number is, again, to be interpreted in our simulation
units) for each component of velocity of each particle, ensuring that the centre-of-mass
velocity remains zero. In effect, the initial velocity distributions P (vx) and P (vy) have
the shape of discrete and equally tall spikes at ±4, as seen in the left-hand plot in
Figure 24.9. The right-hand plot in the same figure plots position component against
the corresponding velocity component across particles. For our specific initial state,
this reflects the velocity spikes at ±4, and the regular cubic lattice structure for position
components. More generally, such a plot is indicative of the joint probability distribution

18

Figure 24.8: Approach to equilibrium as seen through the H function (Eq. 24.10).

of a position component with the corresponding velocity component across all particles.
Since there is no conceptual distinction between the x and y directions for our system,
we have not treated or plotted them separately.

Boltzmann’s H Theorem Boltzmann’s H theorem states that the approach of the system to
equilibrium is accompanied by minimization of what is called the H function, which is defined
as

H(t) =
∫
f(~r,~v, t) log(f(~r,~v, t))d~rd~v.

Once equilibrium is attained, this quantity remains stationary at its minimum value. Here, f
is the single-particle number distribution function over the phase space and a solution of the
Boltzmann transport equation. A 1971 paper by E.T. Jaynes2 argues that the H theorem can
be violated by systems with appreciable potential energy starting from specific classes of initial
conditions and, in fact, the approach to equilibrium here is accompanied by a maximization of
the H function. These classes of initial conditions are common enough to be encountered in
experiments and simulations. Lennard-Jones systems, especially at the high density value (0.75)
and initial conditions used for the simulation behind Figure 24.8 are also known to violate the H
theorem3. The quantity h that we defined (Eq. 24.10) is a kind of H function that is restricted
to velocities.

It is interesting to look at how the velocity distributions themselves evolve to stationarity
as the system approaches equilibrium. Starting from a velocity distribution with sharp
peaks at ±4 (Figure 24.9), Figure 24.10 shows the distribution of velocity components
(bottom left) and componentwise position-velocity correlations (bottom right) as before.
This figure is a snapshot of these quantities over the first 50 times steps, that is for
0 ≤ t < 50. In principle, the same figure could have been done for each time step
separately; however, such pooling together of data across time steps help reduce the
fluctuations to some extent and make the generic features of the distributions stand out

2E.T. Jaynes, Violation of Boltzmann’s H Theorem in Real Gases, Phys. Rev. A4, 747–750 (1971).
3V. Romero-Rochin and E. Gonzalez-Tovar, Comments on Some Aspects of Boltzmann H Theorem

Using Reversible Molecular Dynamics, J. Stat. Phys. 89, 735–749 (1997).

19

Figure 24.9: Left: Initial distribution of velocity components. Right: Componentwise
position-velocity correlations.

clearly. In this figure, we also see the distribution of velocity magnitudes (top left), and
and position-velocity magnitude correlations (top right).

Notice how the original sharp peaks at ±4 at t = 0 got smeared out by the process
of equilibriation. This smearing effect is also clearly seen in both the right-hand plots
when compared to the original discrete, ordered picture at t = 0 in Figure 24.9. We just
state here that the shape of these distributions becomes more or less time-independent
(barring fluctuations, of course) after about 100 time steps or t = 0.5 (we have not
included any figure to demonstrate this).

24.3 Monte Carlo (MC) Methods

Monte Carlo methods are a class of versatile methods for

• generating random samples from arbitrary high-dimensional multivariate proba-
bility distributions, and

• for estimating expectation values of a quantity of interest with respect to a high-
dimensional multivariate distribution. As a consequence of this, Monte Carlo
methods can be used for estimating the value of a (high-dimensional) integral
I that can be expressed as expectation value of a function h with respect to a
probability density function f (i.e., I could be expressed in the form

∫
h(x)f(x)dx).

In the context of statistical physics, this translates to

• randomly sampling configurations (or phase space points) of a system in such a way
that their distribution follows the probability density function of an appropriate
ensemble (e.g., the canonical density function f(·) = exp (−βE(·)) /Z), and

• estimating expectation values of physical properties of interest with respect to this
ensemble-specific probability density function f .

It is perhaps no wonder that Monte Carlo methods originated (in the form of the cel-
ebrated 1953 paper by Metropolis et al.4) in the realm of statistical physics which is
replete with high-dimensional distributions and integrals. What makes these methods

4Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller, Equation of State Calculations by Fast
Computing Machines, J. Chem. Phys. 21, 1087–1092 (1953).

20

Figure 24.10: t = 0.25 (time step 50). Top left: Velocity magnitude distribution. Top
right: position-velocity magnitude correlations. Bottom left: Velocity component distri-
bution. Bottom right: Componentwise position-velocity correlations.

Figure 24.11: t = 0.5 (time step 100). Conventions same as in Figure 24.10.

21

immensely useful tools for exploring probability distributions is the fact that these meth-
ods do not require that the normalization constant (e.g., 1/Z) be known. The formal
basis of why (and under what conditions) Monte Carlo methods work is founded in the
theory of Markov chains.

24.3.1 The Metropolis Algorithm

Consider a system, at a constant temperature T , consisting of N particles interacting via
a potential V (~r1, ~r2, . . . , ~rN). The probability distribution function (PDF) that describes
the spatial structure of the system has the form

P (~r1, ~r2, . . . , ~rN) =
1
Z

exp
{
−V (~r1, ~r2, . . . , ~rN)

kT

}
≡ P ({~r}). (24.11)

A configuration5 ~R of this system is specified by the positions (~r1, ~r2, . . . , ~rN) of all
particles. We wish to generate a sample of such configurations ~R1, ~R2, . . . , ~RM , of the
system in such a fashion that their probabilities of occurrence are in accordance with
the PDF (Eq. 24.11). In addition, we may wish to compute expectation values, with
respect to this PDF, of quantities of interest (such as, average kinetic and potential ener-
gies, a quantity called the radial distribution function that describes spatial correlations
between particles, etc.)

The Metropolis algorithm for this task, in its conventional form, is as follows. Specify
an arbitrary configuration ~R0. If possible, choose this from a high probability density
region of the PDF (Eq. 24.11). Suppose we have generated a sequence of such configu-
rations ~R0, ~R1, . . . , ~Rn−1 using the Metropolis algorithm (to be described shortly). The
next configuration ~Rn is generated by repeating the steps 1–4 below N times (giving
each particle a chance to get displaced on an average once):

1. Choose particle i at random (with uniform probability) from the N particles of
the system.

2. Propose a change in its position by giving it a random displacement, i.e.,

~ρi = ~ri + δ~u.

Here, δ is a parameter that determines the maximum displacement along each
coordinate. ~u is a random vector (with the same dimensionality D as that of ~ri),
with each of its coordinates being picked with uniform density over the interval
(−1, 1). This is typically accomplished by using uniform (pseudo-)random number
generators available in most programming languages, computing environments,
and numerical/statistical libraries. In effect, we have picked ~ρi a random point in
a D-dimensional hypercube of length δ centered on ~ri.

3. Compute the acceptance probability a(~ρi, ~ri) for the displaced position ~ρi given the
current position ~ri, where

a(~ρi, ~ri) = min
{

1,
P (. . . , ~ρi, . . .)
P (. . . , ~ri, . . .)

}
. (24.12)

5The notation ~R in this chapter has the same meaning as {~r} in the rest of this book. In this chapter,
we have use both the notations as per convenience.

22

4. Accept the proposed position ~ρi with probability a(~ρi, ~ri). This is accomplished
as follows: generate a uniform random number u from the interval (0, 1). If u <
a(~ρi, ~ri), then accept the proposed change and displace the ith particle to its new
position ~ρi. If u > a(~ρi, ~ri), reject the proposed change, and the ith particle
remains in its present position ~ri.

Steps 1–4 above are often collectively referred to as a Monte Carlo step. Because of the
special forms of the Boltzmann PDF P (~R) (Eq. 24.11) and the acceptance probability
(Eq. 24.12), the Metropolis algorithm accepts all “downhill” moves that result in the
lowering of the potential energy V (~R) of the system. These are precisely the moves that
take the system “uphill” in the PDF P (~R). Proposed moves that tend to increase the
potential energy of the system are not rejected outright – they are accepted in a proba-
bilistic fashion in step 4 above. This feature allows, in principle, the Metropolis method
to move from local peaks in the PDF (equivalently, local minima in the potential energy)
to other or higher peaks in the PDF (i.e., other or lower potential energy configurations)
to eventually sample the configuration space as described probabilistically by the PDF.

No Need to Know the Normalization Factor

A highly desirable feature of the Metropolis algorithm is that the PDF P (~R) need not
be known precisely all the way upto the normalization factor 1/Z. This is because the
acceptance probability involves only a ratio of PDF values (proposed change against the
current position), which makes the normalization factor 1/Z redundant for the purpose
of this algorithm. This is a very useful feature because such normalization factors are
usually extremely hard or impossible to compute.

Step Size δ and the Acceptance Ratio

This algorithm, in the form above, needs the step size parameter δ to be specified.
A standard prescription for choosing the right value of δ is to monitor the average
acceptance ratio α, defined as the ratio of the number of accepted changes to the number
of proposed changes, and adjust the step size δ such that α remains within a pre-specified
range around 0.5, say between 0.4 to 0.6.

Why Metropolis Works

This algorithm, the way it is described here, may sound rather ad hoc. However, it has
a well-established theoretical justification in the theory of Markov chains. Specifically,
provided that the step size δ is not unreasonably large or small, the chain of config-
urations thus generated turns out to be an ergodic Markov chain. A Markov chain is
called ergodic if, in our context, it is possible to go from every configuration to every
other configuration (not necessarily in a single step). Such Markov chains have a unique
stationary distribution (i.e., one that does not change once it is attained). Furthermore,
it is guaranteed to be attained eventually. The form of the acceptance probability above
guarantees, through what is called the condition of detailed balance, that this stationary
distribution will indeed be our desired PDF P (~R).

Monitoring Equilibriation and Computing Averages

All this boils down to mean that this algorithm will eventually start producing config-
urations of the system that are indeed distributed according to P (~R). Practically, the

23

problem of how long one needs to wait for this to happen needs to be addressed in an
empirical fashion, i.e., by trial and error. The evolution of the Markov chain to the
desired PDF is often called thermalization or equilibriation by analogy to the process of
equilibriation of a physical system.

Expectation values of physical quantities computed are thus to be computed after
rejecting the initial transient portion of the chain of configurations, i.e., after the Markov
chain has attained the desired PDF. Expectation values of a quantity A(~R) of interest,
which is typically a function of the configuration ~R, is computed as a simple average
over a sufficiently long equilibrium portion of the Markov chain, i.e.,

〈A〉 =
1
M

M∑
i=1

A(~Ri).

This is indeed an estimate of the true expectation value of A because the PDF P (~R) is
now represented in the sample of configurations itself.

24.3.2 The Lennard-Jones Fluid Again

Let us illustrate these ideas again with the example of a two-dimensional Lennard-Jones
system. As an example of a physically-relevant quantity to be estimated through the
simulation, let us consider the radial distribution function g(r).

The Radial Distribution Function

The spatial structure of an isotropic fluid (such as Lennard-Jones) is often characterized
by what is variously known as the radial distribution function or the pair correlation
function. This is formally defined as

g(~r1, ~r2) =
N(N − 1)

ρ2

∫
d~r3 . . . ~rN exp (−βV (~r1, ~r2, . . . , ~rN))∫
d~r1 . . . ~rN exp (−βV (~r1, ~r2, . . . , ~rN))

.

For an isotropic and translationally invariant system, g(~r1, ~r2) depends only on |~r1−~r2|
and not on ~r1 and ~r2 separately. We thus denote it by g(r). This function serves as a
link between simulations and experiments, because its Fourier transform

S(k) = 1 + 4πρ
∫

sin(kr)
kr

g(r)r2dr

is an experimentally measurable quantity (e.g., through X-ray scattering). Furthermore,
for a system of particles interacting with a pairwise additive potential (such as Lennard-
Jones) g(r) has the form exp(−βv(r)) in the dilute gas limit (ρ→ 0). Here, v(r) is the
potential energy of a single pair of particles (see Eq. 24.2).

For a solid in a perfectly crystalline state, the g(r) comprises of sharp peaks because
crystalline order allows only a discrete set of pair distances to occur. In the liquid state,
depending on the temperature, these sharp peaks get smeared out because of the mobility
of particles in the liquid state. However, smeared-out relics of the first few peaks still
survive, because particle-particle correlations at short distances still exist in the liquid
state. In the gas phase, only the first peak survives in a much broadened form. For a
Lennard-Jones fluid at constant temperature, so long as the potential energy dominates
(i.e., at low enough temperatures) it would be difficult to find pairs of particles that are
closer than σ. We therefore expect that g(r) = 0 for r . σ for a Lennard-Jones fluid.

24

Figure 24.12: Initial configuration for MC simulation at β = 10 and the corresponding
g(r). Notice the sharp peaks characteristic of solid-like order.

Operationally, g(r) is estimated by counting n(r), the average number of particle
pairs with distances in the range r− 1

2∆r and r+ 1
2∆r. The estimate of g(r) is simply this

number suitably normalized and further averaged over all angular variables to account
for isotropy:

g(r) =
V

1
2N(N − 1)

n(r)
2πr∆r

(two dimensions)

=
V

1
2N(N − 1)

n(r)
4πr2∆r

(three dimensions). (24.13)

Here, V stands for the volume of the system in three dimensions and area of the system
in two dimensions.

A consequence of PBC is that the maximum possible separation between any pair
of particles along any one coordinate direction is L/2. Geometrically, this could be
understood as follows: PBCs turn a line segment into a circle. On a circle, the distance
between a pair of points is not unique (i.e., the clockwise and anticlockwise distances
match only for pairs of diametrically opposite points). This ambiguity is resolved by
taking the shorter of these two distances. In simulations with PBC, this is done in
a coordinatewise fashion. Thus the maximum possible separation between any pair
of particles in D dimensions is L

√
D/2. This must be taken into consideration when

computing g(r) in a configuration R of the system.
The quantity n(r) in the definition of g(r) (Eq. 24.13) is estimated by dividing the

interval 0 ≤ r ≤ L
√
D/2 into Ng intervals of equal length ∆r = L

√
D/(2Ng), and

counting the number of pairs with distances in each of these intervals.

Illustrative Results for g(r)

The MC simulation of a Lennard-Jones system presented here was performed at a fairly
low temperature of kT = 0.1 (β = 10). The value of the step size parameter for the
Metropolis algorithm was δ = 0.15, chosen by trial-and-error so as to keep the average
acceptance ratio α in the range 0.4 . α . 0.6.

Assuming that the system is solid-like at this temperature, we constructed a pecu-
liar initial state consisting of N = 37 particles arranged in a two-dimensional hexagonal

25

Figure 24.13: A typical Configuration generated by the Metropolis algorithm (t =
1000, β = 10), and the corresponding g(r).

Figure 24.14: Potential energy V and the average acceptance ratio α as functions of the
Monte Carlo step index t (β = 10).

26

Figure 24.15: Left-hand plot: Monte Carlo averaged g(r) at β = 10. Right-hand plot:
the same quantity for a 16-particle system at density ρ = 0.75 and β = 1, for comparison.

packed structure (Figure 24.12). we have thus employed the periodic boundary condi-
tions (PBC) with L ≈ 9, treating this as an extended fluid system. This corresponds to
a density ρ ≈ 37/81 ≈ 0.46 particles per unit area (density measured in σ−2 units).

The behaviour of the potential energy V (~Rt) as a function of the Monte Carlo “time”
t (i.e., configuration index along the Markov chain) is shown in Figure 24.14. The cor-
responding behaviour of the Boltzmann PDF P (~R) (Eq. 24.11) is not shown separately;
it follows from the behaviour of the potential energy. Notice the distinction between
the non-equilibrium and the equilibrium portions of the Markov chain of configurations.
Figure 24.14 also shows the variation of the average acceptance ratio α. A typical
configuration in the equilibrium portion of the chain is shown in Figure 24.13.

For estimation of quantities of interest, one needs to discard the initial non-equilibrium
portion of the chain (approximately the initial 200 configurations in this simulation). As
mentioned before, the word “equilibriation” in the Markov Chain Monte Carlo context
means attaining the desired stationary probability distribution function P (~R) by the
Markov chain. Figure 24.15 shows the radial radial distribution function g(r) averaged
over the equilibrium portion of the Markov chain (i.e., after discarding the initial 200
configurations). The presence of multiple sharpish peaks are indicative of a solid-like
phase. For comparison, the same figure also includes a similarly averaged-out g(r) at
β = 1 for a Lennard-Jones system consisting of 16 particles at density ρ = 0.75. Here,
the third and higher peaks are absent, which indicates a liquid-like phase.

Further Resources

Computational Physics

1. Harvey Gould, Jan Tobochnik, and Wolfgang Christian, Introduction to Computer
Simulation Methods (Addison-Wesley, 2006).

2. Franz Vesely, Computational Physics: an Introduction (Kluwer Academic/Plenum
Publishers, Second Edition, 2001).

3. J.M. Thijssen, Computational Physics (Cambridge University Press, 1999).

4. M.P. Allen and D.J. Tildesley, Computer Simulations of Liquids (Oxford Univer-
sity Press, 1989).

27

Molecular Dynamics

1. D.C. Rapaport, The Art of Molecular Dynamics Simulation (Cambridge Univer-
sity Press, 1995).

2. J.M. Haile, Molecular Dynamics Simulation: Elementary Methods (John Wiley &
Sons, 1997).

3. Daan Frenkel and B. Smit, Understanding Molecular Simulation (Academic Press,
Second edition, 2001).

Monte Carlo Methods

1. M.H. Kalos and P.A. Whitlock, Monte Carlo Methods. Vol. 1: Basics (Wiley
Interscience, 1986).

2. M.E.J. Newman and G.T. Barkema, Monte Carlo Methods in Statistical Physics
(Oxford University Press, 1999).

3. D.P. Landau, A Guide to Monte Carlo Simulations in Statistical Physics (Cam-
bridge University Press, Second edition, 2005).

4. K.P.N. Murthy, Monte Carlo Methods in Statistical Physics (University Press,
2004).

5. Gilks, Richardson, and Spiegelhalter, Markov Chain Monte Carlo Methods in Prac-
tice (Chapman and Hall, 1996).

Numerics

1. H.M. Antia, Numerical Methods for Scientists and Engineers (Hindusthan Book
Agency, Second edition, 2002).

2. W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes
in C: The Art of Scientific Computing (Cambridge University Press, Second edi-
tion, 1992).

28

	Simulation Methods
	Simulation in Statistical Physics
	Reality, Models, Mathematics
	Computation and Simulation
	Principal Simulation Methods of Statistical Physics

	Molecular Dynamics (MD)
	Equations of Motion
	Integrating Equations of Motion: the Verlet Algorithm
	Schematics of a Bare-Basics MD Simulation
	Breathing-Mode Oscillations of Highly Symmetric Clusters
	Simulating Extended Systems

	Monte Carlo (MC) Methods
	The Metropolis Algorithm
	The Lennard-Jones Fluid Again

