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The ongoing pandemic of 2019-nCov (COVID-19) coronavirus has made reliable epidemi-
ological modeling an urgent necessity. Unfortunately, most of the existing models are either
too fine-grained to be efficient or too coarse-grained to be reliable. Here we propose a
computationally efficient hybrid approach that uses SIR model for individual cities which
are in turn coupled via empirical transportation networks that facilitate migration among
them. The treatment presented here differs from existing models in two crucial ways: first,
self-consistent determination of coupling parameters so as to maintain the populations of
individual cities, and second, the incorporation of distance dependent temporal delays in
migration. We apply our model to Indian aviation as well as railway networks taking into
account populations of more than 300 cities. Our results project that through the domestic
transportation, the significant population is poised to be exposed within 90 days of the onset
of epidemic. Thus, serious supervision of domestic transport networks is warranted even
after restricting international migration.

I. INTRODUCTION

Following its onset in Wuhan, China, the pan-
demic of 2019-nCov (COVID-19) coronavirus
has wreaked havoc in various countries1,2. In
less than three months the epidemic has engulfed
over 100 nations with more than 100,000 con-
firmed infections and 4000 deaths3,4. Although
the early cases indicate the illness is less severe
than other coronaviruses like SARS-CoV and
MERS-CoV, the evidences of rapid human-to-
human transmission indicates that 2019-nCoV
is more contagious than others5. Thus, it is ut-
most necessary to develop models that are com-
putationally efficient yet realistic enough to as-
sist medical personals, policy makers and general
public.

One of the most celebrated models to study
epidemics is the SIR model, and its subsequent
variations6–8. This model distributes the to-
tal population into compartments for Suscep-
tible, Infected and Recovered individuals, and
a set of coupled differential equations describes
the movement of population from one compart-
ment to another. Although the model has been
used extensively it fails to account for the demo-
graphic details and spatial heterogeneity. Sev-
eral remedies have been proposed to overcome
this limitation. For example, ‘fully-mixed’ as-
sumption can be replaced with network of con-

tacts between individuals9,10. In the last few
days network based SIR-type models were also
used to predict the spread of ongoing epidemic of
COVID-19 coronavirus11,12. Many studies have
used the transmission dynamics of virus in meta-
population patches where the total population
is subdivided into a number of discrete patches,
each of which is treated as being well-mixed13.
Bolker et al.14 used such a model to demonstrate
the effectiveness of vaccination against measles
outbreak. Arino and van den Driessche15,16 have
proposed a model in which the population of a
city is coupled with other cities via a mobility pa-
rameter that describes the net rate of intercity
migration16. Lloyd and Jansen17 also used meta-
population of n-patches to epidemics’ dynamics
to see the patterns of synchrony in outbreaks. A
more involved model with cross-patch infection
was investigated for various cases by Muroya et
al.18, who looked at the global stability of an
endemic.

We note that the network based models
are computationally inefficient while those us-
ing metapopulations, although efficient, usually
fail to maintain initial populations of patches. In
fact Arino and van den Driessche15 have pointed
out that a multi-city model achieves an equilib-
rium population that may not be the one started
with.

Here we introduce a new technique to main-
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tain the desired population of a city via self-
consistent parametrisation. In this approach,
disease dynamics inside individual cities are
treated with SIR model that accounts for the
intra-city mixing. On the other hand, intercity
migration is modeled by spatially realistic net-
works of airports and train stations. Put dif-
ferently, the “fully-mixed” approximation is as-
sumed to be valid inside cities but not between
the cities. Another notable feature of the scheme
proposed here is the introduction of distance-
dependent delay inherent in the transportation.
Additionally, the model is also capable of simul-
taneously handling cities with different popu-
lations. This is achieved by scaling the prod-
uct terms inside the SIR equations by respective
populations as discussed in the next section. As
an application to ongoing COVID-19 outbreak,
we run our model on aviation and rail networks
of India where links connect multiple cities of
varying population sizes.

The paper is organised as follows: In Sec. II,
we outline the details of our model. Then in Sec.
III we discuss our main findings in depth. In the
last section, Sec IV we summarise the results and
their implications.

II. METHODOLOGY

We assume the existence of several meta-
population units inside a given geographical re-
gion such that for each of these the dynamics

of disease is well approximated by the standard
SIR model. The disease transmission among the
units is due to migrating population described
using a coupling term.

In classic SIR model the s, x, and r represent
the susceptible, infected and recovered fractions
respectively. However while dealing with multi-
ple meta-populations of heterogeneous sizes we
are required to represent them in arbitrary units,
typically taking smallest meta-population as the
unit. If φi = si + xi + ri is the size of meta-
population i in these units, then product terms
in SIR model must be divided by φi for sake of
consistency.

We can view this system as a network in
which metapopulations are the nodes that are
connected by links representing migration. We
assume that the outward migration rate from
node i is proportional to its size φi. Assum-
ing that a migrating individual at i is equally
likely to migrate to any of the ki neighbours, the
fraction of population reaching a neighbour is
proportional to 1/ki.

Finally, we note that, in reality when deal-
ing with spatially extended network, migration
between i and j takes place with finite speed
and hence there is an associated delay δij , which
we consider to be proportional to the geographic
distance between i and j. Combining all these,
our model of interacting meta-populations is the
following

dsi
dt

= −β si(t)xi(t)
φi

− ηisi(t) +
∑
j

Aijηj
kj

sj(t− δij),

dxi
dt

= β
si(t)xi(t)

φi
− γxi(t) − ηixi(t) +

∑
j

Aijηj
kj

xj(t− δij),

dri
dt

= γxi(t) − ηiri(t) +
∑
j

Aijηj
kj

rj(t− δij),

(1)

where A is the adjacency matrix of the network
with Aij = 1 if i and j are connected, and 0
otherwise. The β, and γ are respectively the

infection and transmission rates as used in classic
SIR model, with basic reproduction number R0 =
β/γ. Here we choose β = 0.2 and γ = 0.07 (per
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FIG. 1: The time series of the infected populations for select cities of (a) the aviation network, and (b) the
train network of India when Delhi is infected initially. Both the values of the maximum and its location are
governed by the population of the corresponding city.

day) for COVID-19 following the recent estimate
by Zhu et al11.

Now we make a crucial observation that in
the real world, in spite of migrations the to-
tal population of a city remains more or less
constant during the span of a typical epidemic.
To enforce this condition the net migration of a
node should be zero, although the same cannot
be said for s, x, and r sub-populations. Thus

ηiφi =
∑
j

Aijηj
kj

φj (2)

This is a self-consistent equation for ηi’s, and
can be solved iteratively, starting from arbitrary
values of η’s. The η’s thus obtained are deter-
mined up to a proportionality constant, say D.

In the subsequent sections we consider India
to be our geographical region and cities as meta-
population units. The required data is obtained
from various online resources19–21.

III. RESULTS AND DISCUSSION

We apply our model to study the spread of
ongoing epidemic of 2019-nCov (COVID-19) in
India using aviation and railway networks as
substrates. In these networks a link represents a
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FIG. 2: The time series of infected population when
multiple cities are initially infected. Delhi, Mumbai,
Kolkata, Chennai are Bengaluru are initially infected.

direct flight/train between the given nodes. The
sizes of our aviation and train networks are 69
and 320 respectively. Given the time scale of epi-
demic, it is reasonable to assume that the trans-
port from city i to j via air is instantaneous,
making the delay δij = 0. However the same
assumption cannot be made for train transport,
and we make the corresponding delay δij pro-
portional to the geographic distance between the
stations by assuming the average speed to be 50
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km/h.

As mentioned above, the η’s are determined
only up to the scale D by Eq(2), and hence their
converged values depend on the initial guess. We
start by calculating ηi’s with starting guess of
η = 1 for all the nodes. In practice, D depends
on the actual migration data and its accurate
estimation is beyond the scope of this work. In-
stead, we vary D and examine the behaviour of
the system.

We investigate the infected population of all
the cities in time for both the networks sepa-
rately, by first infecting Delhi with xDelhi(0) =
0.0001φDelhi as it is well connected internation-
ally. Fig. 1 shows the time series of infected pop-
ulation of several cities for D = 0.01. We note
several key features of these time series. First,
as a result of our modification of the SIR model
that allows us to handle heterogeneous popula-
tion sizes, the values of the maxima are propor-
tional to the populations of the corresponding
cities. Second, because β and γ are same for
all the cities, bigger cities take longer to achieve
their maxima. Also, for both the networks, most
of the maxima occur in close proximity with each
other implying the necessity of the prepared-
ness against simultaneous large-scale outbreaks.
Since the train network includes delay, the max-
ima tend to occur much later relative to that of
Delhi. Because the train transport is the domi-
nant means of transport in India, this shift of the
peaks is more relevant for the response against
coronavirus.

After this, We take a more realistic situa-
tion in which more than one city is initially
infected. For this, we consider six different
cities and corresponding initial infected frac-
tions: Delhi (10−4), Mumbai (10−5), Chennai
(10−5), Kolkata (2 × 10−5), Bengaluru (10−5),
and Kochi (10−6) with D = 0.01. The results are
shown in Fig. 2 for the train network. The cities
which are initially infected tend to peak earlier
hence the peaks are no longer as synchronous
as before. Because the delay in the air network
is zero, this loss of synchrony is not as promi-
nent, and we show only the network snapshots
in Fig. 3. From the figure, we see that almost
all the nodes become maximally infected after
about 90 days.

The accurate estimation of the parameter D
which is related to the migration is unavailable.
Thus, to check its effect on the epidemic, we vary
it and observe the behaviour of the time tmax

at which the infection maximum occurs for each
city. The results are shown in Fig 4 with initial
infection only at Delhi. D = 0 corresponds to
quarantining Delhi from the rest of the nodes,
and hence only Delhi has finite tmax while for
others tmax is undefined. For D > 0, infection
spreads to other nodes, and understandably very
small values of D result in very large values of
tmax. Upon increasing D, the value of tmax de-
creases rapidly as more fraction of individuals
migrate among the cities. Interestingly, for each
node except the initially infected one, there ex-
ists a critical value of D at which this trend re-
verses and tmax starts increasing again. We can
understand this unexpected behaviour with the
following argument. When D is very high, it
is analogous to having all the population well-
mixed. As a result, too many infected individu-
als migrate from node to node to infect any one
node effectively. In other words, too few infected
individuals remain in any given city compared
to low D. As a result, even the initially infected
node takes long time to get maximally infected,
and peaks for all the cities appear simultane-
ously.

IV. CONCLUSION

Although the spread of epidemic on spatially
extended systems is a well studied area, the ma-
jority of models are either computationally ex-
pensive since they consider individuals and in-
teractions between them, or too coarse-grained
to account for spatial migrations. Here we have
proposed a novel approach that addresses both
these issues, and offers fast and realistic pre-
dictions that are useful for policy-makers and
health personnels. Our hybrid approach to
SIR model with well-mixed intra-city popula-
tions and intercity coupling based on transporta-
tion network lets us predict the course of on-
going pandemic of COVID19 coronavirus in In-
dia. The forecasts based on our model indicate
that within 90 days of the start of the epidemic,
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(a) (b)

FIG. 3: Snapshots of the Indian aviation networks after 60 days (left) and after 90 days (right) when
several internationally well connected cities are infected. The dark red color indicates higher levels of
infected fractions of populations. After 60 days, a sudeen growth in the infected population is clearly seen.
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FIG. 4: The variation of tmax with D for several
cities, when only Delhi is infected initially. Leg-
end also shows the populations of the corresponding
cities.

most of the urban population will be exposed to

the virus unless preventive measures are taken.
Our work also shows that because of the conta-
gious nature of the COVID19 and the crucial role
of the domestic transportation networks, even a
small infected population is sufficient to sustain
and spread the pandemic. Thus, along with re-
stricting international links, it is equally impor-
tant to monitor the domestic transportation.
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