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We study the spatiotemporal patterns in coupled circle maps on a small-world network. This system shows
a rich phase diagram with several interesting phases. In particular, we make a detailed study of transition from
clustered phase to spatiotemporal chaos. In the clustered state, observed at smaller coupling values, some sites
stay close to the fixed point forever while others explore a larger part of the phase space. For stronger coupling,
there is a transition to spatiotemporal chaos where no site stays close to fixed point forever. We study this
transition as a dynamic phase transition. Persistence acts as a good order parameter for this transition. We find
that this transition is continuous. We also briefly discuss other phases observed in this system.
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I. INTRODUCTION

Of late, spatially extended dynamical systems have been a
subject of intensive research. Partial differential equations
�1�, oscillator arrays �2�, coupled map lattices �3�, and cellu-
lar automata �4� are the main paradigms in these studies and
all these approaches have given some useful information in
understanding these systems. After low dimensional chaotic
systems were reasonably well understood, there has been an
extensive work attempting to understand spatially extended
nonlinear systems. One of the simplest and popular attempt
to build spatially extended systems using low dimensional
systems as building blocks has been coupled map lattice
�CML� �5�. While we observe several different dynamic
phases ranging from stripes to spirals in real systems, the
most commonly explored theme in recent literature studying
oscillator arrays and coupled map lattices has been that of
synchronization �6�. Though it is an important feature, syn-
chronized state is a minuscule part of the phase space of
these systems. Other dynamic phases have been studied
much less and deserve further attention.

In general, these systems are studied on d-dimensional
regular Cartesian lattice with diffusive or nonlinear coupling.
Most studies are about logistic maps, but there have been
studies on other maps such as coupled circle maps. In
coupled circle maps, a remarkable variety of behaviors is
observed ranging from synchronization, spatiotemporal inter-
mittency, spatial intermittency, traveling waves, etc. They
also found an evidence of directed percolation �DP� univer-
sality class in transition from laminar state to spatiotemporal
intermittency �7–11�. In coupled maps apart from
d-dimensional lattices, fully global coupling is also investi-
gated in few cases �12�. However, several other topologies
are relevant in different contexts and have not been given
due attention. Apart from theoretical interests, these topolo-
gies are inspired by real life situations such as biological
systems. Biological systems such as neuronal networks or
food webs do not sit on a d-dimensional regular lattice since
these systems have a complex architecture which is not yet
clearly understood. Only recently, we have an extensive data
in this regard and various computational models have been
proposed to explain the structure of such networks.

Two of the most extensively studied models have been the
small-world networks �13� and the scale-free networks �14�.
The geometrical properties of these networks and their ro-
bustness with respect to perturbations have also been studied
extensively �15�. Most prominent difference in these two
models is about their degree distribution. As the name im-
plies, scale-free networks display a power-law degree distri-
bution while small-world models show an exponential decay
for larger degrees. Barabási-Albert �BA� model has been
most popular algorithm for generating scale-free models. In
this model, average path length grows logarithmically with
number of sites �with a double logarithmic correction� and is
systematically shorter than random graph. Small-world net-
works approach random graph in the limit p→1. However,
average path length for small-world network approaches that
of random graph for very small values of rewiring probabil-
ity p. Thus, due to nonlocal connectivities, the average path
length of scale-free or small-world networks �even for small
values of p� is much smaller than a d-dimensional lattice.
The clustering coefficient for small-world networks remains
very high for small values of p and decays to the value in
random networks for large values of p. It is independent of
number of sites. On the other hand, the clustering coefficient
in BA model scales with network size and is higher than
random networks. Several variants of these models have
been proposed and studied. These are highly nonlocal mod-
els. In statistical physics, it is well known that networks with
highly nonlocal connections such random nonlocal coupling
or Cayley-tree-like coupling or coupling which decays very
slowly, exhibits mean-field-like properties �16�. One would
expect a similar behavior in small-world or scale-free sys-
tems. However, the behavior could be markedly different
since dynamical time scales play as important a role as to-
pology in these systems �17�. Nevertheless, it could be said
that dynamics on such systems �apart from the stability of a
synchronized state� is much less studied. In the initial stud-
ies, it was thought that some very interesting properties will
emerge in small-world networks even in the limit p→0. It
was found to be true in models in equilibrium statistical
physics such as Ising model, XY model, or a percolation
problem �see, e.g., �18–22��. These are not dynamical sys-
tems in the strict sense of the word. However, in dynamical
systems, the changes are more gradual and it has been shown
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that topology alone does not decide the nature of asymptotic
phase in these systems. �see, for example, �17,23,24��
Changes are gradual and no surprising changes occur for p
→0 �25�.

Here, we study phase diagram of coupled circle maps on
a small-world network. Circle map is a mathematical model
that exhibits the phenomenon of frequency-locking. In fact,
it is a standard model displaying the characteristic features of
quasiperiodic route to chaos. It is an iterated map and the
iterated variable is interpreted as the measure of angle that
specifies where the trajectory is on a circle �26,27�. We ob-
serve spatiotemporal behavior in coupled circle maps and
report several interesting phases. In particular, we follow
Watts-Strogatz construction of small-world network in which
L sites on a circle are placed and connected with m neighbors
on either side. Later, the connections are disconnected from a
given site i with probability p and replaced with nonlocal
connections. In a variant of this model by Newman and
Watts, instead of rewiring links between sites chosen at ran-
dom, extra links are added between pairs of sites chosen at
random without removing links from underlying lattice �28�.
Recently, Kleinberg studied a model in which the nonlocal
connections are chosen with a distance-dependent probabil-
ity �29�. We restrict our studies to original model by Watts
and Strogatz. In particular, we make a detailed study the
transition from clustered state to spatiotemporal chaos as a
dynamic phase transition. This is a transition from localized
to spatiotemporally chaotic state. We analyze this transition
as a nonequilibrium phase transition and propose persistence
as an order parameter to quantify the transition.

II. MODEL

Let i=1,2 , . . . ,L be L sites on a circle. Let xi�t� be a
continuous variable associated with site i at time t. We con-
struct a Watts-Strogatz small-world network on these sites.
Each site has two nearest neighbors on either side, i.e., m
=2. This gives us 2m connections. We disconnect the con-
nection from any site to its nearest neighbors with probabil-
ity p and rewire it by connecting it to a randomly chosen site.
Boundary conditions are periodic. The evolution of xi�t� is
defined as

xi,t+1 = �1 − ��f�xi,t� +
�

4
�f�x�1�i�,t� + f�x�2�i�,t� + f�x�3�i�,t�

+ f�x�4�i�,t�� , �1�

where t is discrete time index and � is the coupling strength
among the lattice sites in the interval �0,1�. We define,
�1�i�= i+1, �2�i�= i+2, �3�i�= i−1, �4�i�= i−2 with prob-
ability 1− p. Otherwise, they can take a uniformly distributed
random integer value in the interval 1 and L with probability
p. The connections are quenched, i.e., they are made in the
beginning of a simulation and retained throughout. However,
for each configurations, we change connections as well as
initial conditions. Thus, we have done averaging over initial
conditions as well as the connectivities in the results given
below. We have also carried out averaging over initial con-
ditions alone and as expected results do not change for large

enough lattice. Four neighbors are used in order to avoid a
possible formation of isolated cluster due to nonlocal con-
nections. The p=0 case corresponds to nearest and next-
nearest couplings for each site on a circle.

The local on-site map f�x� is the sine circle map defined
as

f�x� = x + � −
k

2�
�sin�2�x�� , �2�

where � is the winding number and parameter k denotes the
nonlinearity. This map shows a very interesting and unex-
pected behavior. For k=0, this map shows a periodic or qua-
siperiodic motion depending on whether or not � is rational.
Above k=1, the map is noninvertible. �For a detailed discus-
sion of this map, see �27��. All sites are updated in parallel.

The fixed point of this system is given by

x� =
1

2�
sin−1�2��

k
� . �3�

We study system using periodic boundary conditions keeping
map parameters k=1, �=0.068 constant while varying � and
probability p from �0,1�.

In most of our studies, we have kept same value of k=1
and �=0.068. However, to check if some interesting phases
are missing, we have performed extensive simulations by
changing all parameters k, p, �, and �. We find that while
there are some qualitative changes, no new phases are ob-
served. The topological quantities such as clustering coeffi-
cient or average path length are clearly not altered when
parameters other than p are changed. However, the location
of dynamical phases is changed when parameters such as k,
�, or � are changed. Thus, the dynamical phases and transi-
tions between them seem to be a function of topology as well
as of dynamics. We will show a dramatic example on how
dynamics can change qualitatively when map parameters are
changed even for same p in the latter part of the paper. The
main difference between our studies with previous studies is
that we do not obtain a direct �second-order� transition from
a synchronized state to spatiotemporal intermittency and thus
do not get a DP transition. It is possible to get such a transi-
tion on changing map parameters. However, by now, DP has
been established as a paradigm for transitions to absorbing
state and this has been confirmed in several studies. Hence,
we restrict ourselves to the above choice of parameters and
study transitions which are not studied before as dynamic
phase transitions. We define an order parameter for those and
even establish the validity of conventional scaling relations
such as finite-size scaling and off-critical simulations. We
also show that this transition cannot be explained in terms of
topology alone.

III. PHASE DIAGRAM

First, we examine the system with parameters mentioned
above. Many interesting phases are seen in the phase dia-
gram displayed in Fig. 1. They are explained below.

There is a phase in which all lattice sites are synchronized
and take the value of fixed point. We call it a synchronized
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fixed point �SFP� phase. However, we obtain a couple of
phases in which certain sites follow certain dynamics and
some other sites follow different dynamics forever. For ex-
ample, for higher values of couplings, we observe a phase in
which some sites stay close to fixed point while the rest
follow a periodic orbit. We label it as mixed phase with fixed
point and periodic orbits �FP/PO�. For even higher values of
coupling, we observe a mixed phase with some sites stay
close to the fixed point while others follow a chaotic orbit
�FP/Chaos�. For very strong coupling, a well-developed spa-
tiotemporal chaos �STC� is observed. But for very large val-
ues of rewiring probability as well as coupling, system dis-
plays SFP. We never observe fully synchronized chaos or
fully synchronized periodic orbit. We observe that SFP is
followed by FP/PO succeeded by FP/Chaos, which is re-
placed by STC phases as we increase �. For larger values of
p, SFP reappears on increasing �.

Several parts of the phase diagram are evident even by
studying the bifurcation diagram of the system. Figure 2 dis-
plays the bifurcation diagram of the system for p=0.8. We
plot the values of xi�t� after leaving sufficiently long tran-
sients as a function of �. If the system reaches synchronized
fixed point in a certain range of �, the bifurcation diagram
obviously shows only one point in that range. Similarly, one
can infer that the system has reached FP/PO by observing
that the diagram shows periodic orbit and a fixed point si-
multaneously. We have checked this statement by investigat-
ing the detailed spatiotemporal evolution of the system.
Above this interval, there is a regime of FP/Chaos and STC
which cannot be demarcated by using bifurcation diagram
alone and we need to look into detailed spatiotemporal evo-
lution of this system to observe this transition. Can we de-
marcate such transitions by looking at certain scalar order
parameter? We show in next section persistence works as an
excellent quantifier to describe this transition.

Obviously, looking at values of all sites in time gives little
useful information and one needs to coarse-grain the system
to extract useful information. Since at least a couple of
phases in this system demonstrate “arrested dynamics” in the

sense that some sites in the lattice stay near the fixed point
while others explore the other parts of phase space without
infecting the laminar neighbors. We try to see the dynamics
taking the fixed point as a reference point. We plot spa-
tiotemporal space-time density plots where we distinguish
between laminar and nonlaminar sites of the lattice �for
FP/PO pattern� or laminar and turbulent sites of the lattice
�for FP/Chaos pattern�. The laminar sites are defined as those
which are within distance �=10−2 from the fixed point and
turbulent �or nonlaminar� sites as ones which are not laminar
sites. In course of time, the turbulent site may become lami-
nar and vice versa. The spatiotemporal evolution plotted in
this manner gives an idea if we have reached arrested dy-
namics in the sense that certain sites remain laminar forever
and are not affected by their nonlaminar neighbors. This is an
interesting phase which we will explore in further detail.

The spatiotemporal patterns are clearly evident from
space-time density plots below. Figures 3�a�–3�d� represents
a particular region in phase diagram occurring for p=0.1.
The lattice index i is plotted along the x axis and the time
index t is along the y axis. The first of these plots, Fig. 3�a�,
is for SFP observed at �=0.01, while the second, Fig. 3�b�, is
for � values in the FP/PO phase. Figure 3�c� shows FP/chaos
phase and Fig. 3�d� shows spatiotemporal chaos observed at
�=0.35.

IV. FP/CHAOS TO SPATIOTEMPORAL CHAOS: A
DYNAMIC PHASE TRANSITION

As mentioned above, we do not get a well-defined con-
tinuous transition from synchronized fixed point to spa-
tiotemporal intermittency for our choice of parameters. How-
ever, we focus on another transition which is obtained
abundantly in the phase space for our parameters. This is a
transition to spatiotemporal chaos from a partially arrested
phase. In this section, we critically and carefully examine the
nature of transition from FP/Chaos pattern to spatiotemporal
chaos. In particular, we would investigate this transition as a
dynamic phase transition. In one regime, certain sites do not
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lose the memory of initial conditions even after a very long
time while it is not so in the other phase. It will be of interest
to investigate the role played by randomness in connections
in this transition.

The order parameters which are used in previous studies
in which transition to synchronized state is studied are vari-
ance of variable values in the lattice or number of active sites
in a lattice. These parameters will not be able to describe this
transition since these quantities will be nonzero in both ar-
rested phase as well as case of spatiotemporal chaos. How-
ever, we find that local persistence acts as an excellent order
parameter in describing this transition though it was also
introduced initially in the context of transition to synchroni-
zation. In particular, Menon et al. introduced it in context of
transition from synchronized fixed point to spatiotemporal
chaos �9�. It was later found by Gade et al. that it works as an
excellent order parameter in exploring transitions between
synchronized fixed point, traveling wave state and spatiotem-
poral chaos in repulsively coupled CML �11�. The synchro-
nized fixed point could be considered as state in which dis-
turbances do not propagate in space. For our transition,
disturbances do not propagate in space at least for some of
the sites. Thus, local persistence could be a good quantifier.
Local persistence in terms of probability is defined as fol-
lows. Persistent sites at time �, P���, is a fraction of sites for
which �xi�t�−x�� did not change sign for all times t��. In
other words, if the site i was such that xi�0��x� �xi�0�

	x�� and it continues to have values less �greater� than x� for
all times t��, then it is a persistent site. We essentially club
the initial conditions assigned to various lattice sites in two
groups. One set of sites having values higher than the fixed
point and other set having initial condition lower than fixed
point and see the conditions for which these two groups
never mix. When we have a clustered state in which some
sites go to fixed point while others explore a larger part of
the phase space, local persistence saturates to a positive
value. On the other hand, for spatiotemporal chaos, it goes to
zero. Thus it has a positive value in the first phase while has
a zero value asymptotically in the other phase. Clearly, it is a
reasonable order parameter. In this paper, by persistence we
will mean local persistence only as we do not study any other
kind of persistence.

We would like to understand the nature of the phase tran-
sition which can be understood by studying the behavior of
the order parameter in detail. The temporal evolution of the
order parameter, the behavior of its asymptotic value as a
function of control parameter, and its dependence on size of
the lattice yield a valuable information which could be used
to investigate the nature of this transition. In this section, we
make a detailed study of behavior of persistence in the vi-
cinity of transition between FP/Chaos and spatiotemporal
chaos. The lattice size is L=2
104. We average over 103

configurations.
Figures 4�a� and 4�b� show evolution of fraction of per-

sistent sites P�t� as a function of t for various values of � for

(b)(a)

(c) (d)

FIG. 3. Space-time plots of the different values of � observed for p=0.1. Lattice of size 100 with parameters �=0.068 and k=1.0. The
space-time plots show �a� in which for �=0.01 it shows the SFP phase, �b� is for �=0.15 �FP/PO phase�, �c� �=0.27 shows a FP/Chaos phase,
and �d� �=0.35 is in the region of spatiotemporal chaos. Laminar regions are represented by black color.
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p=0.1 and for p=0.8. We observe that P�t� approaches
steady-state value for smaller values of coupling and expo-
nentially decays to zero for larger values of coupling. We
also observe that there is a critical value of coupling �c at
which P�t� goes to zero as a power law. This behavior is very
similar to a prototypical second-order transition.

Though the phase transition is defined only in asymptotic
time limit, there is a lot of information revealed in the man-
ner in which order parameter decays as a function of time at
the critical point. For the second-order transition, we expect
it to decay as a power law and we postulate that

P�t� 	 1/t�l, �4�

where �l is the critical exponent �scaling exponent�. It is also
known as a persistence exponent.

At the outset, we would like to note that this change in
asymptotic value of persistent sites P���, from a positive
value to zero, is strongly related to transition between FP/
Chaos state and spatiotemporal chaos. The critical value �c at
which a power law decay is observed, is very close to, if not
the same as, the point at which transition from FP/chaos to
spatiotemporal chaos occurs. �If number of laminar sites is
very few and far between, persistence may still go to zero
asymptotically.� We find this behavior of persistence for dif-
ferent rewiring probabilities p. At the transition point, a
power law decay of persistence is observed. As often hap-
pens with persistence exponents, the persistence exponent is
not unique or universal �see Table I�. It does not show any
systematic behavior as a function of p either. However, it
demonstrates that not only in one dimensions �1D� or two
dimensions �2D�, but even for a small-world system, one can
have a well-defined persistence exponent. We do get a power
law decay signaling a second-order phase transition at all
values of p ranging from �0,1�. Thus, transition remains con-
tinuous, though the exponents are different for different val-
ues of probability p.

A complete understanding of the critical behavior of a
given system would require exact calculation of the critical
exponents and of the universal scaling functions. The above

power law behavior for different values of p is confirmed by
phenomenological scaling law. The local persistence is ex-
pected to have a scaling of the form

Pl�t� 	 t−�lF� t

Lz ,t
�
� , �5�

where 
= ��−�c� is a measure of distance from the critical
point, F is a scaling function, �
 is the temporal dynamical
exponent, and the exponent z is related to the temporal ex-
ponent and spatial exponent �30�. In order to demonstrate the
validity of this scaling form numerically, off-critical simula-
tions and finite-size scaling are carried out.

Off-critical simulations. When the value of the control
parameter differs from its critical value, the persistence does
not show a power law behavior all the way. The persistence
curves below �above� the critical point are expected to satu-
rate �decay exponentially�. The scaling form �5� suggests that
if the values of P�t�
−�l�
 vs t
�
 are plotted for different
values of 
, all curves should collapse on single curves for

(b)(a)

FIG. 4. Fraction of persistent sites P�t� is plotted as a function of time t at the critical point which clearly displays power law. Lattice size
is L=2
104. Data are averaged over 103 initial conditions and critical exponents obtained are �a� 1.291 for p=0.1 and �b� 0.239 for p
=0.8.

TABLE I. Rewiring probability, critical coupling value, and
critical exponents.

Prob.
�p�

Critical
point ��c�

Persistence
exponent ��l� �
 z

0.0 0.31799�0.00002 1.565�0.003 1.293�0.003 1.145�0.003

0.1 0.289�0.0002 1.291�0.004 1.60�0.02 1.085�0.003

0.2 0.271�0.0002 1.247�0.003 1.82�0.02 1.146�0.002

0.3 0.2348�0.0001 0.344�0.002 1.84�0.02 1.650�0.003

0.4 0.2330�0.0003 0.670�0.002 1.13�0.01 2.134�0.002

0.5 0.2360�0.0003 1.775�0.002 0.65�0.02 4.70�0.03

0.6 0.2358�0.0002 1.510�0.002 0.93�0.02 3.50�0.02

0.7 0.2140�0.0003 0.461�0.002 0.20�0.02 1.586�0.002

0.8 0.200�0.003 0.239�0.002 0.470�0.003 1.786�0.002

0.9 0.192�0.002 0.149�0.001 0.70�0.02 2.13�0.02

1.0 0.190�0.001 0.115�0.001 0.45�0.02 2.33�0.03
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the correct choice of �
. Figures 5�a� and 5�b� shows that the
best data collapse is obtained when �
 =1.60 and 0.47 for p
=0.1 and 0.8, respectively. Similarly, off-critical simulations
are carried out for all probabilities. We try to get scaling
collapse which allows us to find values of �
 for different
values of p.

Finite-size scaling. To compute dynamic exponent z, it is
necessary to carry out finite-size scaling. For values of pa-
rameters close to the critical point, the finite-size effects can
be noticed. We measure the critical point for L=2
104. This
lattice size is large enough that the finite-size effects could be
ignored and this critical point could be treated as asymptotic
critical point �c. P�t� is computed as a function of t at �
=�c for various values of L ranging from 100 to 400. P�t�L�lz

is plotted against t /Lz. For a correct choice of z, it is ex-
pected the data obtained for different lattice sizes should col-
lapse onto a single curve. We find that this is indeed true.
This scaling collapse is demonstrated in Figs. 6�a� and 6�b�
for p=0.1 and p=0.8, respectively. Similarly, finite-size scal-
ing is carried out for several values of p ranging from �0,1�.

The local slope analysis of persistent exponent for p
=0.8 shown in Fig. 7 depicts the exponent �l=0.239 which
remains constant for a large range after initial transients are

over. Thus, we conclude that the local persistence exponent
�l=0.239 obtained is fairly accurate.

A systematic study of transition for all probabilities re-
sulted in excellent scaling collapse near critical point for all
these cases, revealing a second-order transition. The values
of exponents have been calculated and presented in Table I
below. In this table, the values of critical point, persistence
exponent, and dynamic exponents �
 and z for all probabili-
ties are given. It is clear that while critical value of probabil-
ity goes down monotonically for higher rewiring probability
p, the exponents do not show any particular pattern in gen-
eral.

V. COMPLEX INTERPLAY OF DYNAMICS AND
TOPOLOGY

Since the above studies present a rather complex picture
in which the persistence exponents do not show any system-
atic behavior, one would wonder if there is a way to under-
stand those by studying properties of underlying lattice such
as average path length or clustering coefficient. Unfortu-
nately, it turns out that topology alone does not dictate the
value of exponent. Apart from the case of k=1, p=0.1 stud-

(b)(a)

FIG. 5. Off-critical simulations near critical point. The graph demonstrates data collapse according to the scaling form �5�. Lattice size
L=2
104. We averaged over 500 initial conditions. �a� is for p=0.1 and �b� for p=0.8.

(b)(a)

FIG. 6. Finite-size scaling for different lattice sizes. �a� L=100, 150, 300, and 400 for p=0.1 and �b� L=100, 300, and 400 for p=0.8.
The graph demonstrates data collapse according to the scaling form in Eq. �5�.
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ied above, let us consider two cases k=0.8, p=0.1 and k
=1.3, p=0.1. In these cases, p is kept constant leaving vari-
ous topological properties unchanged. In all these cases, a
transition from clustered phase to spatiotemporal chaos is
obtained. However, if we look at the persistence exponent,
we get exponent 1.155�0.002 at critical point �c

=0.1784�0.0002 for k=0.8 �Fig. 8�a��. As mentioned
above, for k=1, the exponent is 1.291�0.004. The differ-
ence of the exponents for k=1 and k=0.8 is much more than
our error bar. Now let us consider case k=1.3. We have given
plots of P�t� as a function of t for two values of � below and
above transition �Fig. 8�b��. The curve at critical point will
be bounded by these two curves. Here, a steep decay in per-
sistence is seen by 3 decades if time is increased by 1 de-
cade. Thus the persistence exponent is between 2.7 and 3.3
for k=1.3 if this transition is classified as a second-order
transition. These dramatic changes in behavior of persistence
occur when we change only map parameters and coupling,
leaving p unchanged implies that exponent is a function of p
which dictates topology as well as of map parameters which
affect dynamics.

VI. CONCLUSION

We have studied the spatiotemporal patterns of the system
on small-world network with varying probability p and vary-
ing � from �0,1�. Also studied the phase diagram and the
bifurcation diagram, which clearly show various phases of
system. We find that persistence P�t� acts as an excellent
order parameter for transition from FP/Chaos to STC. Thus
persistence could be a useful quantifier to study even for
transitions other than transition to a synchronized state. We
go beyond this and establish applicability of usual scaling
ansatz about finite-size scaling and off-critical simulations in
this work. This transition is continuous and P�t� displays a
power-law decay at critical point for all probability p. The
persistence exponents are different for different values of p.
�They could also be different if we retain same p and change
map parameters.� We have shown excellent scaling collapses
and demonstrated that the conventional scaling holds also for
small-world lattices. Unfortunately, analytical derivation of
persistence exponent has been carried out only in simplest of
cases and even in those cases it is a very complicated deri-
vation since persistence exponents require knowledge of
time correlations of arbitrary order. Nonetheless, this work
clearly demonstrates that though the exponent is nonuniver-
sal, persistence is an useful order parameter for the transition
from a clustered state to spatiotemporal chaos, revealing a
second-order transition. We have illustrated that topology
alone does not dictate the value of persistence exponent. In
particular, we have shown that exponent could be different
when map parameter for the same value of p is changed.
This implies that one needs to be very careful in dynamic
phase transitions in nonequilibrium systems where the dy-
namics plays as important role as topology. This also shows
that persistence could be a useful order parameter for study-
ing transition from a jammed or arrested phase to a phase
where disturbances move freely in the space.
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FIG. 7. The plot shows Pl�t� multiplied by t−�l with �l=0.239
for p=0.8. Inset shows the raw data of the simulation.

(b)(a)

FIG. 8. Persistence P�t� is plotted as a function of time t for p=0.1. Lattice size L=2
104. We averaged over 500 initial conditions. �a�
The exponent is 1.155 for k=0.8. �b� The exponent is between 2.7 and 3.3 for k=1.3.
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