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We study a lattice model where the coupling stochastically switches between repulsive (subtractive) and
attractive (additive) at each site with probability p at every time instant. We observe that such a kind of
coupling stabilizes the local fixed point of a circle map, with the resultant globally stable attractor providing a
unique absorbing state. Interestingly, a continuous phase transition is observed from the absorbing state to
spatiotemporal chaos via spatiotemporal intermittency for a range of values of p. It is interesting to note that
the transition falls in class of directed percolation. Static and spreading exponents along with relevant scaling
laws are found to be obeyed confirming the directed percolation universality class in spatiotemporal intermit-

tency regime.

DOI: 10.1103/PhysRevE.81.056206

I. INTRODUCTION

Considerable progress has been made in the study of non-
equilibrium statistical processes for a set of diversified sys-
tems in last few decades. In such systems, the temporal evo-
lution starts far from equilibrium initial conditions. The
relaxation to some stationary state essentially depends on
probabilistic local dynamics due to the absence of coarse-
grained free energy or Lyapunov potential, which is attrib-
uted to the evolution involving irreversibility, since the con-
dition of detailed balance is not satisfied in these systems.
Time plays the role of an additional degree of freedom in
such systems. Consequently, there is no obvious symmetry
between spatial and temporal degrees of freedom, which re-
sults in a rich variety of phases and patterns that can be
observed in different parameter regimes. The general theo-
retical starting point is a set of deterministic equations with
stochastic modifications or additions if necessary, e.g., mas-
ter equations, Langevin equations, partial differential equa-
tions, mean-field rate equations, etc. These approaches have
been applied in variety of systems such as the Ising model
[1], catalytic process [2], etc. The dynamics of creation of
pattern generally involves linear instabilities due to param-
eter inhomogeneities, symmetry breaking, defects, etc.
Sometimes these nonequilibrium systems involve transitions
between different dynamical phases with a tunable param-
eter. The usual concepts of equilibrium statistical mechanics
such as universality and critical phenomena can be applied
to such nonequilibrium systems as well. Indeed, the univer-
sality classes and scaling laws will be diverse and character-
istically different from their equilibrium counterparts due to
various symmetries and significance of local dynamics. In
Ref. [3], an excellent review of different systems in this re-
gard is presented. Such systems do not obey usual equilib-
rium statistical laws, which renders them analytically less
tractable except a few notable cases as one-dimensional
reaction-diffusion process, symmetric exclusion process, etc.
Exact methods of many-body quantum physics and noncom-
muting algebra have been gainfully applied in exactly solv-
ing some of the nonequilibrium processes. However, a large
class of such nonequilibrium processes still awaits exact ana-
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lytical solutions. One such, easy to define, process with very
nontrivial critical behavior is the universality class of
directed percolation (DP).

In the last two decades there has been considerable focus
on various systems showing DP behavior and investigating
the routes to DP behavior by means of master equations,
reaction-diffusion processes, Monte Carlo Simulations, and
various approximation techniques [4]. Various models such
as pair contact process, threshold transfer process, asymmet-
ric exclusion process, phenomenological reaction-diffusion
systems, and there variants have been used to explain DP
behavior and to obtain the pertinent critical exponents. Ab-
sorbing phase transitions, such as synchronization [5], epi-
demic spreading [4], wetting [6], self-organized criticality
[7], and several other experimental studies [8] fall under DP
universality class. The debate about “naturality” of synchro-
nous and asynchronous updating rules has also been pursued
while studying DP universality class model systems. Critical
phenomenon on complex networks has also been extensively
studied [9]. DP class has been mainly identified with spread-
ing process which is described as a competition in infection
and recovery.

Studies on several lattice models such as Domany-Kinzel
cellular automata and contact processes have been very help-
ful in understanding DP as a process of the interacting par-
ticles. The general reaction-diffusion scheme corresponding
to spreading in DP process involves self-annihilation, diffu-
sion, offspring production, and coagulation of the particles
[4]. The competition between these processes gives rise to
spreading phenomena and pattern formation in space and in
time. Many variants of these processes have been studied and
found to be falling in DP class. Some of them actually have
given rise to new universality classes in nonequilibrium
phase transitions [3] due to new symmetries, disorders, and
fluctuations. In general, systems under DP class can be said
to have followed the dynamics of competition between vari-
eties of aforementioned processes.

Deterministic systems such as coupled map lattice (CML)
have been toy models for studies in pattern formation and
spatially extended systems. These systems provide great deal
of numerical simplicity along with being analytically solv-

©2010 The American Physical Society


http://dx.doi.org/10.1103/PhysRevE.81.056206

ABHIJEET R. SONAWANE

able. Transition to synchronization and spatiotemporal inter-
mittency (STI) route to spatiotemporal chaos has been well
studied in these systems. Chate and Manneville introduced a
simple CML [10] exhibiting spatiotemporal intermittency
and found that the onset of spatiotemporal intermittency did
not fall in DP class. This apparent nonuniversality was attrib-
uted to the traveling solitons with comparatively longer life-
times [11]. This discrepancy was removed by Rolf er al. [12]
by using an asynchronous updating rule. The asynchronous
updating rule prevented various spatiotemporal structures
from forming which may introduce long-range correlations
which destroy DP. Later, Janaki et al. [13] showed that the
onset of spatiotemporal intermittency in deterministic system
of coupled circle maps is in DP universality class. Local
persistence exponent for this system further validated the ar-
gument [14]. This system is quite distinct from the system
suggested by Chate and Manneville [10] and provided due
credence to the Pomeau conjecture [15]. It is worthwhile to
mention that it is nontrivial to map deterministic dynamics to
stochastic behavior. The system provides a laboratory to test
the validity of DP class. The full phase space of coupled
circle map was explored and classified by Jabeen and Gupte
[16]. Studies on decay distributions of laminar domains in
rheology of nematogenic fluids further showed that the onset
of spatiotemporal intermittency is indeed a DP universality
class testbed [17].

Many studies suggest connection between spatiotemporal
intermittency and DP processes from point of view of nu-
merical estimation of critical exponents. As mentioned
above, the competition between various processes such as
offspring production, coagulation, and self-destruction leads
to DP behavior. It is then imperative to ask: can these pro-
cesses be mimicked by analogous behaviors in CML models
bearing in mind the robustness of DP universality transition?
In this paper, we try to answer this question in the affirma-
tion by actually finding such a system and exploring its spa-
tiotemporal behavior. In Sec. II we introduce the model of
stochastically switched coupling in CMLs. Section III com-
prises results regarding stabilization properties of the model
and numerical estimation of critical exponents. In Sec. IV, a
set of dynamic exponents is obtained and transition of DP
universality class is shown. In Sec. V, we conclude our find-
ings.

II. STOCHASTICALLY COUPLED MAPS

We are interested in mainly simulating the mechanism in
DP processes using tools of coupled circle maps which have
been extensively studied in last few years. Mainly, coupled
circle maps are studied using positive (i.e., attractive) diffu-
sive coupling. Various spatiotemporal structures were men-
tioned in the phase diagram obtained in [16]. Recent results
about the nonuniversal dependence of spatiotemporal regu-
larity in randomly coupled circle map lattice add importance
to nodal dynamics [18]. In CML, the coupling tends to make
the system homogeneous and the local dynamics add tempo-
ral inhomogeneity. Repulsively coupled systems have been
investigated from the point of view of synchronization [19]
and nonlinear dynamics in cardiac myocytes [20]. The un-
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stable type of coupling was also studied by Neufeld and
Vicsek [21]. It has also been found that the ecological webs
typically have both positive and negative connections be-
tween the components [22]. The couplings between neurons
have been found to be both excitatory and inhibitory [23].
Recently, Chen er al. [24] investigated the phase diagram
from positive and negative couplings in Lorenz system. The
system displayed various phenomena as synchronization (in
phase and antiphase) and amplitude death. Coupled circle
maps with negative coupling investigated by Gade er al. [25]
showed region of traveling waves characterized by algebraic
decay of persistence. This behavior was explained using cel-
lular automata model and Motzkin paths. This kind of repul-
sive coupling in regular CML leads to subtractive interaction
of local site with its nearest neighbors as opposed to additive
interaction in positive coupled map lattices. We conjecture
that the repulsive interaction due to subtractive coupling can
be emulated as an offspring production process in DP where
nearest neighbor infects the local site due to negative Laplac-
ian facilitating the propagation of perturbations. On the con-
trary, the positive coupling can be considered as a version of
coagulation or annihilation process. In fact, self-destruction
can be merely accounted for as a local site going to a fixed
point. The DP models involve critical percolation probability
which marks the phase transition. In order to have such a
stochastic element in our model, we introduce coupling prob-
ability as explained below. We introduce the model as fol-
lows. We interpolate between two extremes of repulsive [25]
and attractive [13] couplings.

We assign a continuous variable x,(f) at each site i at time
t, where 1 =i=L with L as the system size. The evolution of
x,(¢) is defined by

x(t+1)
S (0) =S[00 + 5300 = 2x(0)), i 0 < p

fxi(0) + ;[xi_l(t) +x;41(t) = 2x,(1)], otherwise.

(1)

The parameter € is the coupling strength, 0 <7<l is a
uniformly distributed random number picked for each site at
each time. p is the coupling probability deciding the time-
dependent switching between attractive and repulsive cou-
plings. The local dynamical update function f(x) is the circle
map, f(x)=x+ w—ﬁsin(Zﬂ'x). We confine the dynamics to
the interval [0,1] using the following rule. If int[x;(z) |=m,
x[(t)=x;(t)=m if x;(1)>0 and x;(t)=x;(r)—m+1 if x,(r)<0.
The coupling probability p takes values in the interval [0,1],
where p=0 pertains to positively coupled map lattice and p
=1 corresponds to dynamics studied by Gade er al. [25] with
negative coupling. Notice that, we use linear form of cou-
pling. We fix the value of w=0.068 and k=1. The fixed point

solution for the local map f(x) is given by

| 2
X' = —sin_l(—qm)> . (2)
21 k
We can define the dynamics at site i to be laminar if
|x;(t)—x*| < & for a small enough 5~ 0.0001 and to be turbu-

lent, otherwise.
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FIG. 1. Bifurcation diagram with spatial pattern, at an instant of time (after transience), with respect to coupling strength e for L=500
(sites) for three different p values. (a) p=0, shows all the spatial structures in positive coupled circle map lattice for =0.068. (b) p=0.3,
this corresponds to attractor widening crisis route to STI marking the DP transition point at €,=0.627. (c) p=1.0, bifurcation diagram for
repulsively coupled map lattice where the turbulent spots move like traveling waves; this feature is seen for 0.155 < €=0.36 [25].

III. RESULTS AND DISCUSSION

A. Stabilization of steady state

Coupled motile oscillators have been modeled with time-
dependent interaction which switches alternately from in-
hibitory to excitatory, depending on the status of an internal
variable, and this leads to formation of clusters [26]. Intro-
duction of statistical coupling has important bearing on the
stability properties of our system. We present some results
which show that the state x(i)=x(j)=x"Vi,j,t gains stability
for adequate coupling strength in the presence of time-
dependent switching of coupling, with x* being the nontrivial
fixed point. The creation of windows of stability happens to
take place for all finite values of p, which means that small
fraction of negative links, in an otherwise positively coupled
circle map, facilitates in the local fixed point becoming a
global attractor. This type of spatiotemporal synchronization
in coupled maps has been achieved by various means such as
introducing random nonlocal connectivity [27,28]. Rapid

switching of random links also stabilizes the fixed point [29].
Numerous studies of time delayed coupling in variety of sys-
tems, including CMLs [30], have shown the way of achiev-
ing such synchronization. Recent studies also incorporated
effects of random delays of various distributions and network
topologies and showed the existence of windows of stability
which are otherwise absent in uncoupled maps [31]. Here, in
this system we show that such a kind of synchronization can
be obtained in coupled circle maps when we allow the cou-
pling to switch between attractive and repulsive.

Turova [32] showed that an inhibitory neuron incorpo-
rated into a population of connected excitatory neurons sta-
bilized the oscillations of total activity. In our case the frac-
tion of negatively coupled sites in the network can be
determined by coupling probability p. In this sense, the pa-
rameter p can be considered as balance between repulsive
and attractive coupling links in the network.

It can be seen from the spatial bifurcation pattern shown
in Fig. 1(b) for p=0.3 that the fixed point becomes a stable
global attractor in the range 0 <e<e,. In Fig. 1(a), the bi-
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FIG. 2. Schematic phase diagram in e-p plane. Critical edge
between laminar (inactive) and turbulent (active) sites where DP
transition occurs for L=1000.

furcation diagram for p=0, i.e., all couplings are positive, is
depicted, and in Fig. 1(c) the same for p=1 (all repulsive) is
shown. The value of €. changes monotonically with respect
to p as can be inferred from the phase diagram in Fig. 2. At
the extremes i.e., in the cases of p=0 and 1, we have all
attractive CML and all repulsive coupling considered by
Gade et al. [25]; here, we have interpolated between these
two extreme regimes. At each instant of time, each site
chooses among the two coupling types: positive or negative.
There is a clear transition where the global attractor loses
stability and the system transits to spatiotemporal chaos.
Such a transition from synchronized state to incoherent state
can be characterized by average error function defined as

L
z={ 23l -7F ). 3)
i=1

t

where (--+), denotes temporal average and X is the average
over elements of an array [1/L3% x,(1)].

Figure 3 displays the average error Z vs € for various
values of p. It may be observed that for large range of € there
is in-phase synchronization among the elements of the lat-
tice. The value of p is increased from p=0.2 to 0.9 with each
curve as we move from right to left. The stabilization is
observed even for small values of p. As reported in the ear-
lier works, in achieving stabilization, array architecture,
feedback, and delay played a role. Here, synchronization is
achieved in an otherwise unstable lattice by changing the
nature of coupling statistically in a fixed neighborhood. The
spatiotemporal structure is evident from density plots shown
in Fig. 4. We fix the value of p=0.3 and show plots for
different values of € pertaining to different dynamical re-
gimes. Site index is plotted along the x axis and time evolves
about the y axis. For e=0.5 shown in Fig. 4(a), the final state
is a stabilized fixed point or all laminar state. Upon further
increase in coupling strength to €=0.7 in Fig. 4(c), the sys-
tem displays a fully developed spatiotemporal chaos. In the
intermediate value of coupling strength another interesting
phenomenon occurs. At €=0.627 shown in Fig. 4(b) turbu-
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FIG. 3. (Color online) Average error function plotted against
coupling strength with increasing value of p from right p=0.2 to
left p=0.9. We can see the range of fixed point decreasing with
increasing p. These are also the point where DP transition occurs.

lent clusters start to appear and give rise to spatiotemporal
intermittency. In this state, a site can become turbulent or
laminar. The spatiotemporal intermittency arises due to at-
tractor widening crisis. Due to this sudden crisis the globally
fixed point loses stability and the variable x(i) can now
traverse the entire phase space. Sudden bursts of turbulent
activity occur in the system, and this marks a dynamical
phase transition from laminar to chaotic regimes which we
will characterize in the next section.

B. Dynamic phase transition in DP class

In the previous section we have seen that the system un-
dergoes a phase transition from a fixed point state to a cha-
otic state. In CML, the laminar site can turn into turbulent
site only if at least one of its neighbors was turbulent at
previous time. On the contrary, a turbulent site might be
driven to a fixed point by its laminar neighbors. This might
depend on the type of local interaction that takes place
among neighboring sites. The subtractive interaction might
induce turbulence and additive interaction might drive the
site toward a fixed point. This can be understood from the
fact that positive coupling will move the turbulent site with
laminar neighbors to a fixed point. For example, if x(i) > x*,
positive coupling will lower the value of x(i/) moving it
closer to the fixed point; the opposite will happen if x(i)
<x", where the value will be raised toward the fixed point.
On the contrary, the repulsive coupling will enhance the
growth of small wavelength spatial disturbances even if a
local map tends toward stable conditions arising due to posi-
tive coupling. The local onsite chaotic dynamics indeed al-
lows the site to go to a fixed point and become laminar once
it is in the basin of attraction of a fixed point. It can be seen
that such a kind of transition appears clearly due to the type
of stochastic coupling applied here. Now, we can consider
these processes to be analogous with particle creation, pair
annihilation, and self-destruction process in DP universality
class. In DP, the bond can be either open or closed depending
on probability; the stochastic coupling probability here in-
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FIG. 4. (Color online) Space-time plot of CML for w=0.068, L=500, and p=0.3 for three different € values. Laminar sites are dark in
this representation. (a) €=0.5, where the turbulent spots vanish, implying a synchronous state. (b) €=0.627, where we clearly see the
spatiotemporal intermittency regime. (c) €=0.7, where the system shows spatiotemporal chaos. (d) Spreading of three active seeds in an

otherwise absorbing lattice of size L=500 at critical point €,=0.627.

deed well portrays the role of the percolation probability. As
DP is interpreted as a reaction-diffusion process which in-
volves creation, coalescence, and death, we can consider sto-
chastic time-dependent switching of coupling from repulsive
to attractive as a dynamical analog to statistical process. So
far coupled circle maps at certain parameter values studied
by Janaki er al. [13] and Jabeen and Gupte [16] was the only
known example of a coupled map lattice with a unigue ab-
sorbing state whose transition falls in universality class of
directed percolation. Here, we propose a coupled circle map
lattice with coupling scheme incorporating the effects of cre-
ation, death, and coalescence as in general DP systems. We
quantitatively discuss spatiotemporal intermittency obtained
by stochastically coupled circle map lattice and its universal-
ity class. Numerical evidence suggests that such an analogy
can be established from the estimates of the critical expo-
nents for this CML.

The order parameter m(e,L,?) is defined as the fraction of
turbulent sites in the lattice averaged over many initial con-
figurations. In the spatiotemporal chaos region, the density of
turbulent sites decays and eventually saturates at some value.
It is well known that for a continuous phase transition the
saturation value of order parameter m,, decays as a power
law as the coupling strength € approaches the critical value
€. asymptotically. In addition, there are certain scaling expo-
nents which we obtain as following the scaling relations as
suggested by Hinrichsen [4]. We obtain the critical exponents
for p=0.3, but the DP transition remains valid for all the
points shown in the phase diagram in Fig. 2. Conventionally,

the exponent B is determined by measuring the stationary
density of turbulent sites m,~ AP, where A=|e-€.], ap-
proaching the critical point €, from the side of spatiotempo-
ral chaos. This estimate is inaccurate since the equilibration
time to reach the saturated stationary value grows rapidly as
the critical point is approached. This is called critical slow-
ing down. The critical percolation threshold is obtained by
measuring deviations from the asymptotic power-law decay,

m(t) ~ 12, 4)

for a large system size. We start with initial conditions at
which all sites are turbulent. In Fig. 5, three different values
of coupling strength are shown for p=0.3. For €=0.617, the
density of turbulent sites decays exponentially and the sys-
tem reaches absorbing state. Critical coupling €,=0.627 for
p=0.3 shows an algebraic decay of order parameter with
respect to time, which defines the critical exponent &
=0.159 in agreement with DP. We take a system size of L
=5000 which is large enough to neglect finite-size correc-
tions, if any. Upon further increase in coupling strength, €
=0.636, the fraction of turbulent sites saturates to a finite
constant value. The order parameter scales with time and
system size through the following scaling relation:

m(t,L,€.) = tP"VF(ArY1, 173 L) . Q)

In Fig. 6(a), variations of order parameter for different
distances from criticality are shown against the time. We plot
m(t)t® vs t(e—e,)" for different deviations from criticality.
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FIG. 5. (Color online) Log-log plot of order parameter m(z) as a
function of time for p=0.3 and L=5000 for three different € values
from bottom to top. (a) €=0.617, where the density of turbulent
sites decays exponentially. (b) €=0.627, where order parameter de-
cays as a power law with exponent §=0.159. (c) €=0.637, where
the density saturates to a value. The line with a slope of 0.159 is
plotted for reference.

The off-critical scaling is achieved at 1=1.733 at which all
curves collapse as shown in Fig. 6(b). The exponent 8 can
then be extracted from the relation B=06y, whence S
=0.275. The above procedure thus avoids the critical slowing
down. The dynamic exponent z can be calculated using the
finite-size scaling argument. Figure 7(a) shows a log-log (all
logarithms are to the base 10) plot of order parameter m(t) vs
t for different lattice sizes L=200,250,300,350 at the criti-
cal point €. Figure 7(b) shows a double-logarithmic plot of
m(t)t° vs t/L* for various system sizes. The data collapse is
obtained for dynamic exponent z=1.58. The dynamic expo-
nent z=v;/v, gives a measure of how fast the local pertur-
bation spreads. The exponent v is the spatial correlation ex-
ponent and v, is the temporal correlation exponent which
can be obtained using the above relation, viz., v, =1.09, in
agreement with DP class.

IV. DYNAMIC SPREADING EXPONENTS

To further validate our conjecture that stochastic coupling
can be considered as the dynamic analog of DP processes,
we simulate the model presented in Eq. (1) starting with few
turbulent (active) sites in an otherwise absorbing medium
[33]. To counter strictly symmetric spreading [13], we start
with three contiguous turbulent sites. The spreading phenom-
ena can be seen in Fig. 4(d). In this type of simulations, the
relevant variables are the number of active sites N(7) aver-
aged over all runs, the survival probability P(r) averaged
over many clusters, and the mean spreading distance
(squared radius of gyration) from the origin of turbulent ac-
tivity averaged over only surviving runs from the ensemble.
At criticality, these quantities display asymptotic power law
of the form

P(t)~ 1% N(t)~1t% R t)~rs, (6)
with survival probability exponent &, slip exponent 6, and
spreading exponent z,. All the dynamic simulations have
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(b) t Al

FIG. 6. (Color online) (a) Log-log plot of order parameter m(t)
as a function of time for p=0.3 and L=5000 for different values of
€=0.636,0.633,0.63,0.623,0.62,0.617 shown from top to bottom
away from criticality. (b) The corresponding plot of data collapse
according to scaling function (5) for different A. The data collapse
is obtained for »=1.733.

been performed for lattice size L=5000 and averaged over at
least 5000 different configurations. We fix p=0.3 for the fol-
lowing simulations. Figure 8(a) shows the plot of survival
probability p(7) vs time ¢ on a logarithmic scale in the inset
for different e. The power-law decay is obtained for critical
coupling strength €.=0.627 on a lattice size of 5000. The
critical exponent associated with the survival probability was
found to be 6=0.159+0.001, in agreement with the corre-
sponding DP exponent. This also shows that the rapidity-
reversal symmetry pertaining to time invariance, which is
obeyed in DP class, is followed in our model, too. This is
owing to the fact that the exponents associated with critical
density of turbulent sites m(#) and survival probability P(z)
are the same. This means that such a time-reversal symmetry
is possible in our model of CML with stochastic coupling.
This adds credibility to the use of chaotic systems for study-
ing stochastic processes. To estimate the critical exponent
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FIG. 7. (Color online) (a) Log-log plot of order parameter m(t)
as a function of time for p=0.3 and €=0.627 for different lattice
size values L=200,250,300,350. (b) Finite-size scaling for scaling
function (5). This shows excellent data collapse with exponent
z=1.580.

and transition points together, we determine the local slopes
of the scaling variables. Effective exponents can be calcu-
lated by using the formula [34]

-5
logyo b

. (7
with b=5. At the critical point the value of exponent con-
verges, whereas the off-critical curves have drastic curva-
tures, i.e., we can see that subcritical curves veer downward
and supercritical curves deflect upward.

Figure 8(b) (inset) shows N(z) vs t for supercritical
(€=0.637), critical (€,=0.627), and subcritical (€=0.617) re-
gions. It can be seen that at criticality the number of turbu-
lent sites N(z) grows as a power law. Figure 8(b) shows the
effective exponent 6(z).

The dynamic exponent z is related to z, by the relation
z,=2/z. The effective exponent for mean-square spreading
from the origin, z,, is shown in Fig. 9. The radius of spread-
ing increases algebraically as seen in the inset for e,.

V. CONCLUSIONS

In conclusion, we propose a model where negative and
positive couplings are present in the lattice. We have studied
the spatiotemporal properties of a lattice of coupled circle
map whose coupling is switched between positive and nega-
tive with probability p. We explore the effect at each value of

FIG. 8. (Color online) (a) Time-dependent behavior of effective
exponent &(z) for corresponding coupling strengths. Convergence is
seen at 6~ —0.159 for €. Survival probability P(¢) turbulent sites as
a function of time for three different values of coupling strength
€=0.617,627,637 shown in the inset. (b) Effective exponent 6(r)
and average number of turbulent sites (N(7)) in the inset for same
set of parameters.

p and try to investigate the impact of time-dependent switch-
ing of coupling. The time-dependent probabilistic switching
of coupling has an interesting effect on spatiotemporal dy-
namics of the system. The first important implication is the
stabilization of a local fixed point into a stable global attrac-
tor. We also provide evidence of continuous phase transition
from a globally attracting spatiotemporal fixed point to spa-

2/z(t)

e= 0.624

0.8 ¢= 0627
¢=063
07 1 1 1
0.000 0.005 0.010 0.015 0.020

t

FIG. 9. (Color online) Time-dependent behavior of effective
exponent 2/z for three different values of coupling strength e
=0.63,0.627,0.624; coupling strengths from top to bottom. Conver-
gence is seen at 2/z~ 1.26 for €. Radius of mean-square spreading
of active sites (R*(r)) for critical coupling strength €=0.627 is
shown in the inset.
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TABLE 1. Critical state exponents of the stochastically coupled circle map lattice. First row corresponds to critical coupling probability
and critical coupling strength. The last row shows corresponding exponents of DP class.

Pe € :8 ) L v, < 6 0 s
0.3 0.627 0.275 0.159 1.733 1.09 1.58 0.159 0.31 1.27
DP [4] 0.2764 0.1594 1.7338 1.096 1.5807 0.1594 0.3136 1.26

tiotemporal chaos with increasing coupling strength for most
of the values of p. The implication of the stabilization of a
fixed point is that it acts as a unique absorbing state. Studies
on synchronization transition in locally coupled replicas of
same systems suggest different universality classes for dif-
ferent synchronization transitions. The jump from one uni-
versality class DP to multiplicative noise (MN) occurs when
chaos turns into stable chaos for a value of map parameter
[35]. The random multiplier (RM) model of coupled piece-
wise linear maps is model where stochastic dynamics was
considered. The transition in RM model belongs to DP class
or MN class depending on values of propagation velocity of
unsynchronized site clusters and transverse Lyapunov expo-
nent [36]. The stochastic nature of dynamics was in terms of
map parameters and deviations in replica system, but the
nature of coupling was constant (democratic coupling).

The important motivation behind our model was to check
whether one can mimic nonequilibrium stochastic processes
by deterministic dynamical systems with addition of an ele-
ment of randomness equivalent to percolation probability.
The numerical results suggest a strong evidence that the dy-
namic phase transition from a spatiotemporal fixed point to
spatiotemporal chaos, via spatiotemporal intermittency, is in
class of directed percolation. Several spreading and non-
spreading exponents obtained are shown in Table I. The ear-
lier studies of positively couple circle map showed that the
onset of spatiotemporal intermittency is in DP class at some
specific parameter values of circle map. Here, we find that

for most of the values of coupling probability p, there is a
critical coupling strength e at which the transition occurs.
This continuum of behavior between two extreme situations
(p=0 and 1) makes one understand the fact that the reaction-
diffusion mechanism in stochastic process can be success-
fully recovered by a suitable model of dynamical processes.
Thus, it may be deduced that the creation, coalescence, and
death processes in DP can be considered analogous to attrac-
tive and repulsive couplings in CMLs. It is important to note
that our model follows the Grassberger conjecture applicable
to DP systems. The stochastic coupling is a short-range pro-
cess as it involves only nearest neighbor, without any addi-
tional symmetries or quenched randomness. A possible ex-
tension of this problem is to obtain a partial differential
equation for stochastically coupled circle maps and try to
find elements of DP-Langevin equation, thus establishing
analytical congruency on the lines of [37]. We hope to ex-
amine the possibility in our future work.
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