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The electronic structure of many-electron square-well quantum dots with and without an attractive impurity
has been investigated within the spin-density-functional theory. We consider various sizes of quantum dots
with the number of electrons varying from 2 to 20. We observe the emergence of localized Wigner-molecule-
like behavior along with the wall-like feature in the charge density. However, unlike the parabolic quantum

dots, we do not observe the analog of concentric rings. We also observe the typical broken symmetry configu-
rations noted in earlier reports for quantum dots. The impurity induces the localized magnetic moment which,
in many cases, generates the spin-polarized configurations with the antiferromagnetic coupling. An examina-
tion of the magnetic states indicates that the presence of impurity may change the ground state of quantum dot
from magnetic to nonmagnetic and vice versa. We also observe that the localized charge at the center sharpens

the walls.

DOLI: 10.1103/PhysRevB.76.085340

I. INTRODUCTION

Understanding the basic physics of low dimensional sys-
tems and, in particular, the nanomaterials has gained an im-
mense importance because of their technological implica-
tions. Quantum dots are zero dimensional electron systems
experimentally realizable due to advances in the fabrication
technology. Because of their similarities with the atomic
structures, they are considered as the artificial atoms.'~* Such
quantum dots, formed by confining two dimensional gas, are
highly tunable in terms of the number of electrons and the
size. Therefore, they represent important paradigms for in-
vestigating various properties of interacting many-body sys-
tems. The applications vary from single-electron transistor,
spectral detectors, lasers to even quantum computing.
Equally interesting are possible novel quantum effects due to
electron-electron interactions and confinement. Since their
realization in early 1980s,* quantum dots have been a subject
of extensive theoretical® and a variety of experimental
investigations.!

In recent years, electronic structure of quantum dots has
been investigated by a variety of techniques. A majority of
the work reported is with the parabolic confining potentials.’
There have been several well established studies on quantum
dots using density functional theory (DFT) and spin density
functional theory (SDFT).3%-8 Considerable insight has been
gained because of extensive DFT investigation in spite of the
limitation of such a one-electron approach. One of the suc-
cess of DFT is to reproduce the addition spectra for the quan-
tum dots observed experimentally.®!” The magnetic compo-
nent of the ground state depicted by the DFT, which results
in shell structure of quantum dots, is also in agreement with
the Hund’s rule.'® Even the highly correlated features such as
Wigner localizations have been successfully picked up by the
DFT.%7 For an exhaustive review on electronic structure of
quantum dots, we refer to the article by Reimann and
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Manninen.> We also refer to the work of Farrelly and
co-workers'"'? on the localization of one and two point lat-
tice limits with field induced boundaries.

The reports on DFT have also brought out some features
which are subject of extensive debate, e.g., the broken sym-
metry solutions. In the low density regime, mean field theo-
ries may lead to the solutions in which spin density does not
follow the rotational symmetry of the confining potential.
Yannouleas and Landman'? have analyzed and classified the
symmetry breaking in quantum dots at zero or low magnetic
field, while Harju et al.'* have presented a general scheme
that incorporates several configurations into DFT to restore
the symmetry.

In addition, such theories are also known to fail to repro-
duce the results in the strongly correlated regime. In spite of
such limitations, considerable insight has been gained be-
cause of extensive DFT investigations, and DFT based meth-
ods remain one of the easily accessible methods in treating
large number of electrons. It may be noted that for a proper
treatment of electron-electron correlations, sophisticated
techniques like configuration interaction’® and quantum
Monte Carlo (QMC)'? are warranted. A recent work by Gho-
sal et al.'®'7 using QMC has pointed out an interesting as-
pect, namely correlation induced inhomogeneity in quantum
dots.

Although quantum dots are usually modeled by consider-
ing the external confinement to be parabolic in shape, the
current technology enables us to engineer other types of con-
finements also'8 e.g., ellipsoidal, square, polygonal, etc. Such
investigations with different confining geometries help to
bring out a class of features which are generic to the con-
finement. Akbar and Lee® have studied up to 12-electron
square quantum dot describing addition energy spectra,
charge configuration, and Wigner-molecule-like states. Stud-
ies have also been carried out on rectangular and some other
polygonal confinements."”
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It turns out that the quantum dots are prone to have im-
purities during the process of fabrication. Quite clearly, the
presence of even a single impurity or disorder is bound to
affect the electronic properties of the dot. Therefore, a thor-
ough understanding of the effect of impurity on the elec-
tronic structure is highly desirable.?’-?> Reusch and Egger?
have used the path integral Monte Carlo to study the impu-
rity effect on the quantum dots. Their focus has been the
incipient Wigner molecule regime. Risinen et al.?> have
studied the effect of an impurity placed in the vicinity of
quantum dot on the single-electron transport spectrum. They
use parabolic confinement with parameters adjusted to yield
experimental one-electron spectrum. The impurity is consid-
ered to be a negatively charged Coulombic one. Their SDFT
calculations are restricted to six electrons. They have ob-
served that the impurity evens out the state alteration as a
function of magnetic filed. Sahin and Tomak? have studied
the electronic structure of spherical quantum dot with an im-
purity. They have seen that the capacitive energy with the
impurity increases with respect to the case without impurity.
Studies on off-center hydrogenic impurity have been carried
out by Movilla and Planelles.?!

In the present work, we have calculated electronic struc-
ture of square-well quantum dots with weak, attractive im-
purity placed at the center of the dot. We carry out an exten-
sive DFT analysis of charge and spin densities by varying
electrons from 2 to 20 and over a wide range of dot sizes.
Typical r, range considered here is from 0.5 to 10.

The paper is organized in the following manner. We de-
scribe the model of the quantum dot and impurity in the
following section (Sec. IT). We also draw the details of com-
putational work in the same section. We summarize our re-
sults on pure quantum dot in Sec. III A where we present the
density profiles, the magnetic state of the system, etc. Sec-
tion III B describes the results obtained by inserting the im-
purity and contrasting these results with the pure system.
Finally, in the last section (Sec. IV), we summarize our re-
sults.

II. MODEL AND COMPUTATIONAL DETAILS
A. Pure system

The quantum dot is defined as a system of interacting
electrons in an external confinement taken as a square-well
potential in the present case. The quantum dot under inves-
tigation is strictly two dimensional (confined in the z axis),
so the external potential takes the form

0, 0=x=L,0=y=L

Veul®,y) = V, otherwise, (1)
where L is the length of the quantum dot and the barrier
height V(,=1200 meV. The material of the dot is assumed to
be GaAs. We also assume effective mass approximation with
an effective mass m"=0.067m,, where m, is the mass of an
electron, and dielectric constant e=12.9. The units of length
and energy are scaled to effective atomic units: effective
Bohr radius az=9.8 nm and effective hartree Ha'=2Ry"
=12 meV. In the SDFT formalism, the Schrédinger equation
in Kohn-Sham?*2?> scheme reads as
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FIG. 1. The charge density of the four-electron system con-
structed out of noninteracting particle eigenfunctions using Hund’s
rule (S,=1). The qualitative nature of the charge density will remain
unchanged for all values of r,.
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where ngf is the effective potential with spin o. We define
the density parameter r, as

[1
ry=L gv (3)

It is clear from this equation that for higher density, r, is
lower and vice versa.

We use real-space grid technique for the solution of Eq.
(2). For exchange-correlation energy, we use the local den-
sity approximation.’® Our technique initiates the self-
consistency with one of the several hundred educated
guesses of charge density in search of energy minima, which
assures the detection of actual ground state of the system.

We first take a look at the single-particle (noninteracting)
picture in this potential. For such a system, wave functions
are given by

Vgﬂ(r)) 7 (r) = €47 (r), (2)

2 ,
Uy n =—cos<w>cos(w>, 4)
<y L L L

and energy eigenvalues by

1
By =5 (0241, (5)

Following the notation used by Akbar and Lee® we see the
degeneracy in the eigenspectra as (s), (p,.p,). (d),
(dy2_y2,25), and so on. Now, using this single-particle eigen-
states and Hund’s rule (S.=1), a typical four-electron density
is generated and is shown in Fig. 1. The qualitative nature of
this density remains unchanged for all sizes of quantum dot
(i.e., with respect to the variation in ry).

B. Impurity model
We model our impurity in a simple Gaussian form
2
Vinp(.y) = = Ae™P0, (6)

We add this V;,, to the external potential given in Eq. (1).
Parameters A and S can be used to tune the impurity for
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FIG. 2. The total charge densities of the four-electron quantum dot for (a) r,~ 1.5, (b) r,~4, and (c) r;~8.

desired results. We set A=12 meV and $=0.5. Radius of the
impurity is ~35 nm. Throughout the calculations described
in this paper, we maintain this set of parameters unchanged.
The parameters are so adjusted that the impurity has a bound
state for noninteracting case, while it has no bound state in
the many-body picture. We have placed the impurity at the
center of the dot.

Such kind of impurity can be present while fabricating the
quantum dot by the subsistence of positive charges or it can
well be engineered to seek the exciting properties. Experi-
mentally, it is already seen that the external positive charges
can create a “bubble” in charge density of two dimensional
electron gas.”’

III. RESULTS
A. Pure system

As discussed in the Introduction, there have been some
studies on the square quantum dots.®”-!° In order to place the
impurity results in proper perspective, we briefly present the
main features observed in the pure systems for the number of
electrons varying from 2 to 20.

1. Charge density profile

We have carried out an extensive SDFT study for various
sizes of the quantum dot. We vary r, by varying one of the
quantities, namely, the number of electrons or the length of
the dot, keeping the other fixed. The first set of calculations
is carried out for four different fixed sizes with length of the
side L~45, 100, 210, and 315 nm, and for each of these
cases, self-consistent solution has been obtained for N
=2-20. The second set of calculations has been carried out
for the systems up to 20 electrons for two different values of
r,, namely, 1.5 and 4.

It is instructive to bring out the difference between the
noninteracting charge density shown in Fig. 1 and the SDFT
charge density shown in Fig. 2. The figure shows the total
charge density for the four-electron case for three different
values of ry, i.e., r;~ 1.5 [Fig. 2(a)], 4 [Fig. 2(b)], and 8 [Fig.
2(c)]. It is evident from Fig. 2(a) that, in higher density re-
gion, the SDFT picture is in fair agreement with the nonin-
teracting one. However, as r, increases (low density region),
the SDFT charge density begins to differ considerably from
the noninteracting one. Indeed, as seen from Fig. 2(c), the
SDFT charge density captures the highly localized behavior

characteristics of Wigner-molecule-like behavior.3>1214.28-32

In confined systems at low densities, the confinement
strength weakens and the Coulomb interaction dominates,
leading to such a localization.

It is to be noted that the square well has four characteristic
points, namely, its corners. Whenever the number of elec-
trons (either up, down, or total) is less than or equal to 4,
they arrange themselves in the four corners of the well in the
form of localized peaks in the low density region. As the
number of electrons increases, there is a general tendency for
the formation of walls along the sides of the dot. In Fig. 3,
we plot the total charge densities with N=2, 6, 11, and 20
electrons for the case of high density region (left panel) and
low density region (right panel). As can be seen from the
figure, once these four corners of the well are occupied by
four electrons, the excess electrons tend to spread themselves
not only toward the corners but also along the sides of the
well forming wall-like structures.

It is interesting to note that the charge density along the
walls is inhomogeneous. This can be brought out by exam-
ining the evolution of the charge density along the wall as a
function of number of electrons by keeping the area fixed. In
Fig. 4, we show the charge density along the line joining the
two adjacent peaks (along the walls) for five different values
of the number of electrons. The figure shows the oscillating
nature of the total charge density and the emergence of more
than one peak for the large values of electron count, e.g.,
N=20. It is to be expected that for a large number of elec-
trons (area remaining constant), the number of oscillations
will increase yielding almost uniform wall. It is evident from
Figs. 3(c) and 3(d) that the oscillations become more signifi-
cant in low density region. In this density region, the wall
structures correspond to semilocalized electrons, i.e., they are
considerably localized in the direction perpendicular to sides
while along the sides they are delocalized. It is reasonable to
expect that in the extremely low density region, the oscilla-
tions noted above will emerge as clearly localized peaks.®

2. Spin-polarized densities

Because of their single-determinantal approximation to
the full many-body ground state wave function, the mean
field theories are known to yield the broken symmetry solu-
tions. Such symmetry breaking solutions in quantum dots
have been analyzed in great detail>”'*33 for zero and low
magnetic fields. The system breaks the internal symmetry
and gains the exchange-correlation energy resulting a typical
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FIG. 3. Total charge densities in high density
region (left panel) and in low density region
(right panel) for N=2, 6, 11, and 20. High density
region corresponds to r,~ 1.5, and low density
region corresponds to r,~4 except for N=2,
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FIG. 4. Oscillations of the charge density along a side of the
well. The size of the well is fixed to be ~250 nm, so ry varies from
~6 (for N=4) to ~2.7 (for N=20).

spin-density-wave-like solution.” Although a broken symme-
try solution is the issue of substantial debate,? such a solution
gives considerable insight into the nature of the charge den-
sity.

Our spin-polarized solutions can generally be categorized
into three classes. First is a trivial case where the solutions
for up and down electrons are the same. In this case up,

0.04

0.02

0.04

0.02

FIG. 5. Spin-density-wave-like behavior observed for N=7, S,
=1/2, and r,~4. The charge densities for (a) four up electrons and
(b) three down electrons are rotated by an angle /4 with respect to
each other, giving rise to SDW-like configuration.
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FIG. 6. (Color online) The charge densities for three up (a) and
one down (b) electrons of the four-electron quantum dot for S,=1 at
ry~4. This is the broken symmetry solution, where individual spins
do not follow the symmetry of the potential.

down and total charge densities confirm the rotational sym-
metry of the confining potential. Second is the case where up
and down charge densities are different but all the charge
densities follow the symmetry of the confining potential, and
the third class is where only the total charge density has the
desired rotational symmetry.

The charge density belonging to the second class is illus-
trated in Fig. 5. In this figure, we show the charge density of
seven-electron quantum dot at r,~ 4, where four up electrons
localize themselves at the four corners [Fig. 5(a)] and the
remaining three electrons are arranged along the walls [Fig.
5(b)], in such a way that their charge density is shifted by
/4 with respect to the up electron charge density. It may be
noted that these down electrons are considerably less local-
ized. Thus, in this case, the spins are antiferromagnetically
ordered.

Figures 6(a) and 6(b) show the charge density belonging
to the third class for N=4 at r,~4. The ground state belongs
to S,=1. Clearly, this is the broken symmetry solution where
three up electrons are localized in the three corners and one
down electron is localized in the remaining corner. It may be
noted that the total charge density has the desired symmetry.
Such broken symmetry solution is predominantly observed
in the lower density region.

3. Magnetic states

Our SDFT scan of the solutions for various values of r
and N shows that the quantum dots display a variety of mag-
netic states and transitions from one state to another. This
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observation is consistent with the earlier report by Akbar and
Lee.® In general, in high density region (dot size ~65 nm),
shell filling of electrons is in accordance with the noninter-
acting spectra (discussed in Sec. IT A). Thus, N=4, 10, 14,
and 18 the ground state has S,=1, in agreement with the
Hund’s rule. However, with the expansion of the dot, the
SDFT eigenspectra start departing from simple noninteract-
ing spectra significantly and magnetic transitions occur. We
summarize the values of S, for the ground state in Table I. In
this table, we have noted the cases where the magnetic state
has changed as a function of area. There is no obvious trend
that can be drawn from this table.

B. Quantum dot with an impurity

Now, we present the results with the addition of impurity
by contrasting them with those obtained in the pure system.

PHYSICAL REVIEW B 76, 085340 (2007)

FIG. 7. Left and right panels
show the total charge density in
the high density (r;~ 1.5) and low
density (r,~4) regimes, respec-
tively, for N=4, 6, and 13 electron
quantum dot.

LOW DENSITY

TABLE I. Magnetic states (S,) for two different sizes of quan-
tum dot.

No. of electrons S, for L~65 nm S, for L~250 nm

1 3
3 3 2
1 0
1 3
5 3 3
10 1 0
12 0 1
1 3
2 : :
19 5 E
20 0 2
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FIG. 8. The down (N|=3) charge density of the seven-electron
dot plotted along the diagonal of the well (r;~1.5). (a) Charge
density in the presence of the impurity and (b) without impurity.

Our parameters are identical to those described in Sec. II B
irrespective of the size of the well.

1. Charge density profile

It is expected that due to the presence of an attractive
impurity, the charge will be accumulated at the center. As we
shall see, this will have a significant effect on the charge
density especially in the low density regime. In Fig. 7, we
show the total charge densities of N=4, 6, and 13 at r;
~ 1.5 (left panel) and r,~4 (right panel) in the presence of
the impurity. For four-electron quantum dot in the high den-
sity regime, the impurity is covering a substantial area (
~90% ) within the dot. As a consequence, the eigenfunctions
and the charge density are totally dominated by the attractive
potential of the impurity resulting in nearly uniform charge
density covering the impurity region. As we increase the
number of electrons (keeping r, fixed), the size of the dot
also increases. Slowly, we see the formation of four peaks
(N=6), and eventually for higher number of electron (N
>6), we see the formation of a small peak at the center. The
presence of the impurity thus induces the peak in the charge
density at the center of the dot. This feature is absent in the
pure system. The evolution of the charge density is brought
out in Fig. 8, where we have shown the down electron charge
density along the diagonal with and without impurity for the
seven-electron system.

For the low density regions (left panel of Fig. 7), the
central peak can be seen for all the electrons. For high value
of r,, the strength of the confinement reduces and the area
covered by the impurity becomes modest in comparison with
the area of the dot. In this regime, electrons start loosing
their kinetic energy and tend to get away from each other to
minimize the Coulomb repulsion. Eventually, only one elec-
tron (either up or down) gets “trapped” inside the impurity
and others spread in the remaining area of the well [Fig.
7(b)]. The charge densities for higher number of electron are
shown in Fig. 7 for r,~ 1.5 and 4. The development of wall-
like feature observed in the case of pure quantum dot (Sec.
IIT A 1) is also seen in the present case, however, with a
difference. Note that, in the case with impurity, we have five
special points, namely, four corners and one impurity site at
the center, so that the building of wall-like feature starts for
N>5. Because of the presence of a localized charge at the
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FIG. 9. Charge enclosed within the radius (up to ~85 nm), in
case of N=11 (S,=1/2, r;~4), for (a) system without impurity and
(b) system with impurity. Observe that only one up electron is
trapped within the impurity radius (~35 nm, shown by vertical bar)
and other electrons are getting pushed away.

center, the electrons along the borders of the well feel extra
Coulombic repulsion. This makes walls and the corners
sharper, i.e., more localized as compared to the pure system.

To illustrate the nature of the localization of an electron in
the impurity region, we compute the charge enclosed within
a circle of radius r, centered at the impurity. In Figs. 9(a) and
9(b), we show the up and down charges enclosed within the
radius r for pure system and system with impurity, respec-
tively. The plot is for N=11 (S,=1/2) and the vertical bar
represents the extent of the impurity. As can be seen, there is
hardly any charge near the center in absence of the impurity;
however, impurity induces the total charge of 1, and as a
consequence, other charges are repelled from the center. In-
terestingly, the effect of the impurity is to place the localized
magnetic moment ( Z=%) at the center and has interesting
implications in the magnetic order, which is discussed in the
next section.

2. Spin-polarized densities

It is of some interest to examine the possible magnetic
order. In the presence of impurity, we have three general
classes of spin polarization, like those in the pure system.
However, it is interesting to note some differences in the spin
density. Most of the systems in the high density regime fall
under the trivial class of spin-unpolarized case, so we focus
our discussion on the low density regime. We begin the dis-
cussion by presenting a simple two-electron case. It is
known’ that two-electron dot at low densities displays the
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FIG. 10. Charge density contours of the two-electron quantum

dot for §,=0 at r;~12 for (a) the pure system and (b) the system
with impurity.

spatial separation of up and down spins (broken symmetry
solution of type 3 of Sec. III A 2). Figure 10 shows the
charge density contours for up and down spins: (a) without
impurity and (b) with impurity for a typical low density re-
gion (dot size ~300 nm). As the impurity potential is turned
on, one of the electron, say up, is firmly localized at the
center while the other one (down) is localized at the four
corners, generating antiferromagnetic-like coupling between
the center and the corners. Note that in the presence of im-
purity, both the spin densities follow the symmetry of the
potential. This can be contrasted with the behavior of the
corresponding case of the pure system shown in Fig. 10(a).
The spin ordering for N=3 and 4 is similar to that shown
in Fig. 10(b). The excess electrons get distributed in the cor-
ners. The dots with N=5, 6, and 7 belong to the broken
symmetry solution, where individual spin densities do not
follow the symmetry of the potential (figure not shown).
The dots with N=8, 9, and 10 belong to the second class
of solution where up and down spin densities separately fol-
low the symmetry of the potential but are not identical. A
typical case for N=10 is illustrated in Fig. 11. In this figure,
we show the spin density (p;—p,) for ten-electron system (
S.=0, ry~4). It can be seen that one of the down electrons is
trapped inside the impurity and the remaining four down
electrons are localized at the corners and the five up electrons
form the wall. The peaks in the up spin density lie in be-
tween the corresponding peaks of down spin density. The
eigenspectrum for this system is shown in Fig. 12, where it is
clearly seen that only one eigenstate for down electron lies

PHYSICAL REVIEW B 76, 085340 (2007)
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FIG. 11. Spin density (p;—p,) of the ten-electron quantum dot
with impurity for S,=0 at ry~4.

far below the rest of the spectrum (singly occupied). The
impurity also causes the bunching (near degeneracies) of
states as seen in the figure.

3. Magnetic states

The presence of the localized charge (in the present case,
a localized magnetic moment) may alter the magnetic state
of the corresponding homogeneous quantum dot. Table II
summarizes the results with and without impurity for two
distinct values of r,, namely, 1.5 and 4. In this table, we have
shown only those cases where impurity has changed the
magnetic state (S,) of the system with respect to the pure

125
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FIG. 12. Eigenvalue spectrum without (a) and with (b) impurity
for N=10 and r;~4 (S,=0). Difference in up and down spectra in
pure case (a) is because of the presence of SDW-like spin arrange-
ment. Observe the appearance of single separate eigenstate in the
down spectrum for impure dot (b).
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TABLE I1I. Transition of magnetic states of the quantum dot
with impurity.

rg~1.5 rg~4
N S, for pure S, for impure S, for pure S, for impure
1 1 3 1
3 2 P P p
4 1 1 0 1
1 1 3 1
3 2 P P p
6 0 0 0 1
1 1 1 3
7 2 2 2 2
8 0 0 0 1
3 1 3 3
13 2 2 > >
14 1 1 0 1
18 1 0 0 1
3 1 1 1
19 3 2 2 2
20 0 0 2 1

system. It can be seen that the impurity has the significant
effect on the low density region (r,~4). Surprisingly, the
impurity also alters the magnetic states of a few cases in the
high density region (e.g., N=13, 18, and 19), reducing the
values of S.. Thus, the impurity may be used to change the
magnetic state of the quantum dot from high to low as well
as from low to high. For example, for N=3,5,20, the impu-
rity changes the spin state from high to low. Experimentally,
such transitions have been achieved by means of suitable
external magnetic field.>*

4. Addition spectra
The addition energy of the nth electron is defined as

An = En+1 - 2En + En—l ’ (7)

where E, is the total energy of the nth electron. Addition
energy is the amount of energy required to add an electron to
the dot. Thus, the higher the value of A, the more stable is
the n-electron dot. We present the calculated addition energy
spectra for the dot size of ~105 nm without and with impu-
rity in Fig. 13. This size spans the r; from 1.3 (for N=20) to
4.3 (for N=2). As can be seen from the figure, the addition
spectra of the quantum dots with small number of electrons
are significantly affected by the impurity.

IV. SUMMARY

The electronic structure of square quantum dot with and
without an attractive impurity has been calculated within the
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FIG. 13. (Color online) Addition spectra with (dotted line) and
without (solid line) impurity for well size ~105 nm.

framework of SDFT. The results have been obtained for
charge density, spin density, total energy, and magnetic mo-
ment of the ground states for number of electrons ranging
from 2 to 20 and for several values of 7.

We observe localized charge density characteristic of the
low density regime. Typically, in the present case, the charge
density shows four peaks which are associated with the walls
for higher number of electrons. Unlike in the case of para-
bolic confinement where concentric rings are observed, we
do not observe such a concentric set of walls. We also ob-
served spin density wave SDW-like configurations for a class
of parameters.

The impurity is seen to induce the significant changes in
charge density especially in central region. For two to four
electrons, we observe an antiferromagnetic-like configura-
tions with firm unit magnetic moment at the center and four
peaks at the corners for opposite spins. It is also observed
that the magnetic state of the dot changes due to the presence
of the impurity.

Finally, it may be mentioned that the picture evolved in
the present work is based on a single-particle-like approach.
It is known that in the low density regime, the electron-
electron correlation effects are significant; therefore, wher-
ever possible, it is desirable to verify the results by explicitly
correlated methods such as configuration interaction.
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