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We study the transition to phase synchronization in a model for the spread of infection defined in a small
world network. It was shown �Phys. Rev. Lett. 86, 2909 �2001�� that the transition occurs at a finite degree of
disorder p, unlike equilibrium models where systems behave as random networks even at infinitesimal p in the
infinite-size limit. We examine this system under variation of a parameter determining the driving rate and
show that the transition point decreases as we drive the system more slowly. Thus it appears that the transition
moves to p=0 in the very slow driving limit, just as in the equilibrium case.
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I. INTRODUCTION

The dynamics of spatially extended systems has been very
well studied in the past two decades. On the other hand, in
the recent past, the importance of studying networks, their
structure, and properties has been realized, and researchers
from fields ranging from neurodynamics and ecology to so-
cial sciences have been extensively working in this area
�1–4�. In particular, small world networks �2� have been
studied in many different contexts. This model is defined in
the following way: One starts with a structure on a lattice—
for instance, k regular nearest-neighbor connections. Each
site is now linked with 2k of its nearest neighbors on either
side. For nonzero p, we rewire all the links with probability
p; i.e., the site is disconnected from the site within distance k
and is connected to a randomly chosen lattice site which
could be anywhere on the lattice. This model is proposed to
mimic real life situations in which nonlocal connections exist
along with predominantly local.

It has been observed in these systems that starting from a
one-dimensional chain at p=0, one obtains long-range order
at any finite rewiring probability with the same critical ex-
ponents as in the mean-field case. Moore and Newman re-
cover critical exponents for percolation on small world lat-
tices which are the same as for the Bethe lattice—i.e., an
infinite-dimensional case �5�. For the XY model,
Medvedyeva et al. conjecture that critical exponents are the
same as for the mean-field case �6�. They have confirmed it
for p�0.03, and there is good reason to believe that it is true
for any p�0. �The obvious difficulty is that one needs to
simulate larger and larger lattices at small p.� Similar con-
clusions are reached for the Ising model in a small world
network �7�. This strongly suggests that the behavior for any
p�0 is the same as the behavior for p=1 for these models.

Dynamical systems are nonequilibrium systems, and in
general it would not be very surprising if they have different

behavior �8,9�. In fact for dynamic transitions in nonequilib-
rium models there is evidence of transitions at finite p. For
instance, the transition to self-sustained oscillations evident
in a model of infection spreading occurred at finite p �8�.

Here we will try to identify the conditions under which we
could expect the behavior of nonequilibrium or dynamical
systems to be similar to that observed in equilibrium models.
As a case study we use the model of infection spreading
showing finite-p transitions, mentioned above. First we dis-
cuss the model in detail in Sec. II. Then in Sec. III we study
the model with respect to a parameter determining the driv-
ing rate of the system. We show how very slow driving leads
to transitions at p→0, as in equilibrium models. We con-
clude in Sec. IV with a discussion.

II. MODEL OF INFECTION SPREADING

We consider the SIR-susceptible �SIRS� model �The la-
bels S and I stand for susceptible and infectious state of
individuals in population while R stands for the refractory
state in which individuals are recovered with temporary im-
munity.� of infection spreading on a lattice. We take a graph
of N vertices on a one-dimensional lattice. Each vertex has
2k connections. Each site i is connected to sites i+1, i
+2, . . . , i+k on the right side and i−1, i−2, . . . , i−k on the
left side when p=0. We assume periodic boundary condi-
tions. For p�0 we rewire these 2k connections with prob-
ability p and connect site i to a randomly chosen site j on the
lattice. Each site i is assigned value �i�t� at time t. The vari-
able �i�t� can take integer values from 0 to �0. If �i�t�=0, the
site i is considered susceptible at time t. If �I��i�t��1, it is
considered infected, and if �i�t���I, it is considered to be in
the refractory stage at time t. For sites which are not
susceptible—i.e., �i�t��0—the dynamics is simple:

�i�t + 1� = �i�t� + 1 if 1 � �i�t� � �0 − 1

and

�i�t + 1� = 0 if �i�t� = �0.
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The dynamics does not depend on the neighbors if the site
is not susceptible. Neighbors come into question only while
infecting the susceptible site. The model assumes that only
infected sites infect their neighbors. Thus a site susceptible
at time t will be infected at time t+1 with probability pro-
portional to the fraction of infected sites in its neighborhood.
In other words, if �i�t�=0, �i�t+1�=1 with probability
pi=kinf /ki where ki are the total number of neighbors of site
i, of which kinf are infected. With probability 1− pi, the sus-
ceptible site does not change state. The dynamics for the
infected sites is deterministic. The infected sites slowly be-
come refractory and then eventually become susceptible
again.

Kuperman and Abramson simulated the above model on a
small world lattice �8�. They observe that the fraction of
infected sites at a given time t shows oscillations in time for
a large value of p. One can view the system as a sum of
many interacting clusters, and at large values of p, these
clusters get synchronized to each other, giving collective os-
cillations. It was reported in �8� that this transition to syn-
chronization indeed occurs at a finite value of p and the
transition becomes sharper in the thermodynamic limit.

We note the following fact about phase-synchronized os-
cillations. If all of them become truly synchronized, they will
reach a value of zero at the same time, and since there are no
infected sites in the lattice, infection will die down. If we
assume that �0 is not fixed but has a distribution, it still does
not guarantee that the absorbing state will be avoided. If the
system that falls is a state in which �i�t�=0 for all i, it stays
in this state forever unless there is some external source of
infection. To avoid this state, we make a small change in the
model. We add quenched disorder or sources of infection
�10,11�. We choose 1% of the total number of sites and keep
them in the infectious state forever—i.e., �i�t�=�i�0� for all
these sites for all times and �i�0�=1. This guards system
against falling into a fully synchronized state where there
is no further evolution �10�. The results in the section below
are obtained from our modified SIRS model with quenched
disorder.

III. RESULTS

Specifically we study the behavior of the infected sites
with respect to �I+�R��0, which determines the rate of driv-
ing in this model. We see pronounced fluctuations in the
number of infected sites as a function of time. These fluctua-
tions are periodic with the natural period �0, which is the
time scale for a susceptible site, if infected, to become sus-
ceptible again.

Figure 1 shows the time evolution of the fraction of in-
fected elements, for p=0.1, for a particular realization after
discarding a long transient. The figure displays four cases
with varying values of �0 �keeping the ratio �I /�R fixed�.
Time has been scaled by the natural time scale �0 so that
results from different choices of �0 can be easily compared.
It is clear that as �0 increases the collective oscillations be-
come more pronounced. These oscillations essentially indi-
cate the presence of cycles in the outbreak of disease.

For a small fraction of nonlocal connections p, these os-
cillations are seen only if �0—i.e., natural time scale for the

disease—is fairly large. On the other hand, for a higher p,
even smaller �0 yield collective oscillations in the number of
infected individuals at a given time. An intuitive reasoning
could be given as follows. For larger �0 the information that
a given site is infected can propagate more, since the site
stays infected for a longer time. A similar role is played by
large p, as the information that a given site is infected
spreads over several sites in a very small time if one has a lot
of nonlocal connections. This sharing of information leads to
collective phenomena like periodic excitations appearing
spontaneously in the system. Since higher �0 and p play
similar roles, one can expect that for higher �0, we will start
seeing collective oscillations even at small p.

As an illustrative example of the similar roles played by
high p and high �0 consider the following: the number of
nonlocal connections are certainly important in the spread of
disease, as the outbreaks can affect locations far apart geo-
graphically, but time scales also play a role. For instance,
Ebola is far more deadly virus than HIV and kills the host
much faster as it has a much shorter incubation period. How-
ever, due to the very fact that it kills so swiftly, Ebola out-
breaks are contained very soon. The people infected by
Ebola die very quickly, and so the virus has less time to jump
to a new host and spread the disease. If no new victims come
in contact with the body fluids of infected people in their
short lifetime, the epidemic stops. On the other hand, HIV
remains a problem worldwide since victim lives longer and
has longer time to infect others �12�.

To see this quantitatively, we study the synchronization
parameter, which is the relevant order parameter here. This is
defined as

FIG. 1. Fraction of infected sites vs t /�0 for a system of size
10 000, for �a� �R=144, �I=64, �0=208, �b� �R=72, �I=32, �0

=104, �c� �R=36, �I=16, �0=52, and �d� �R=9, �I=4, �0=13. The
value of p is 0.1.
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��t� = � 1

N
�
j=1

N

expi�j�t�� , �1�

where � j =2��� j −1� /�0 is a geometrical phase correspond-
ing to � j. The states �=0 are left out of the sum �8�. As
mentioned above, 1% of the sites are quenched in the infec-
tious state during the time evolution. We choose initial con-
ditions in which 10% of the total sites are in the infected
state. The sites which are not quenched evolve according to
the rule mentioned above. We average over 120 configura-
tions for N=104 and compute the above order parameter af-
ter waiting for 2.5	104 time steps.

When the system is not synchronized, the phases are
widely distributed and the value of expi� is spread widely
over the unit circle. This leads to small �. On the other hand,
when the elements are synchronized, � is large. If all ele-
ments are strictly synchronized, � will be 1.

Figure 2 shows the synchronization parameter � obtained
as a time average of ��t� over 1000 time steps. Subsequently
we also average over different realizations of the system. The
different curves are obtained for different values of �0. A
transition in synchronization can be observed as p runs from
0 to 1. This transition occurs at values closer to 0 as �0
increases. We must mention that we also carried out the same
calculation for N=105 where we averaged over 20 configu-
rations and waited for 9	104 time steps. As in the case of
the original system, we observe that there is no qualitative
change as we do simulations for larger system size, except
that the transition becomes sharper.

The original authors postulated that the transition to col-
lective oscillations in infected individuals could be related to
the dependence of clusterization in the network on the prob-
ability p of nonlocal connections. Clusterization C�p� is a
quantifier of the number of closed triangles in the network—
i.e., how many neighbors of a given site i are also neighbors
of each other. It is averaged value over all sites and normal-
ized to its maximum possible value. �See footnote 12 of �8�.�
Unlike the average path length, the C�p� decreases slowly as
a function of p and there is an intermediate regime where
there is a low average clusterization C�p� for a given p
though the distribution of clusterization at element level ci�p�
is rather broad. They find that this is precisely the regime
when the onset of collective oscillations occurs. However, in
this work, we studied the dynamics of the system for differ-
ent values of �0. This change does not alter topology of un-
derlying network and hence does not affect C�p� or disper-
sion around it. But the transition is certainly affected. The
fact that the transition can be seen without changing topol-
ogy of underlying network suggests that time scales also
play an important role in this transition apart from structure
of the network on which the dynamics is taking place.

IV. CONCLUSIONS

We studied the transition to phase synchronization in a
model for the spread of infection defined on a small world
network. It was shown in �8� that the transition occurs at a
finite degree of disorder p, unlike equilibrium models where
systems behave as random networks even at infinitesimal p
in the infinite-size limit. We examined this system under
variation of a parameter determining the driving rate and
showed that the transition point decreases as we drive the
system more slowly. Thus it appears that the transition
moves to p=0 in the very slow driving limit, just as one
expects in the equilibrium case.

Some earlier studies may also be interpreted in this light.
For instance, it was observed that the transition point of the
finite p transitions to synchronization in coupled chaotic
maps decreases to p=0 as the chaoticity of the local map
�which determines the time scales of information loss� de-
creases �9�. This can be seen to reflect the fact that a transi-
tion at p→0 is obtained when the rate of Lyapunov exponent
1 /
 tends to zero. The characteristic time scale for informa-
tion loss in a chaotic system varies as 1 /
. So as the time
scale reaches infinity, the transition point goes to zero. We
also note Fig. 2 in our previous paper �13�. There we have
plotted the power spectra of the collective field for small
world lattices at different values of p. We note that high-
frequency �i.e., short-time-scale� peaks are seen only at large
values of p, while low-frequency �long-time-scale� peaks are
seen even at small p. Thus there is a clear interplay between
the probability of nonlocal connections p and the time scales
in the system. This suggests that in an extended parameter
space one can find dynamic transitions at infinitesimal p, as
in the equilibrium case, in the very slow driving parameter
limit.

FIG. 2. Order parameter �defined in Eq. �1�� vs p for a system of
size 10 000, for �a� �R=144, �I=64, �0=208, �b� �R=72, �I=32,
�0=104, �c� �R=36, �I=16, �0=52, �d� �R=18, �I=8, �0=26, and �e�
�R=9, �I=4, �0=13.
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