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Abstract 
 
The physics of low dimensional systems has attracted much attention during the past 

decade or so. These systems refer to the structures that extend to less than 3 

dimensions. Clusters, thin films, quantum dots, nanotubes and nanowires are some 

well known examples of the systems with reduced dimensions. One of the interesting 

properties shared by these systems is ‘confinement effect’ in the sense that the entities 

are specially restricted. The clusters, for example are zero dimensional systems, which 

are formed by aggregation of few to hundreds of atoms. Their properties are very 

different from those of their bulk counterparts. During the past decade, atomic clusters 

have attracted much attention due to their importance in understanding nanoscale 

materials. One dimensional materials such as nanowires, nanotubes and nanoribbons 

show unique properties in terms of the conductivity. Carbon nanotubes (CNT) are 

well known to possess semiconducting or metallic behavior dependant on the 

diameter and chirality. Yet another recently synthesized (quasi) one dimensional 

structure called as graphene nanoribbon (GNR) shows width dependant band gap. 

These are unzipped carbon nanotubes having zigzag or armchair edge patterns. A 

recently synthesized ‘graphene’ is the most exciting discovery in this century.’ It is 

one atom thick two dimensional sheet of sp2 bonded carbon atoms having zero band 

gap. All these systems noted above are confined because of their reduced dimensions. 

It is also possible to fabricate the confined systems by inserting the atoms, molecules 

or clusters inside nanotubes or buckyballs. This is the case of ‘physically confined 

system’. In general, the hollow space inside the nanotubes can be used as a natural 

confinement for inserting the atoms and molecules. 

 In the present work, we have studied the thermodynamics and electronic 

structure of few confined systems, namely, melting behavior of clusters and electronic 

structure calculations of graphene, hydrogenated graphene (graphane), graphene 

nanoribbons and carbon nanotubes. All the calculations are carried out using Density 

Functional Theory (DFT).  

The first chapter is an introductory chapter. We have discussed the interesting 

properties, possible applications of the confined systems under study. We also take a 

brief review of related experimental and theoretical work pertaining to the topic. The 

melting in clusters has also been addressed elaborately. 
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In the second chapter, the detail discussion on density functional theory is 

carried out, as it is the key tool for all the calculations. It is followed by the discussion 

on molecular dynamics. Various data analysis tools are noted thereafter along with the 

error analysis. 

In the first problem (chapter three) we have carried out extensive first 

principal thermodynamic simulations of carbon doped Al13 and Ga13 clusters. The 

doping with an impurity is an effective way to tune the melting temperature of the 

host cluster. In the present case, doping Al13 and Ga13 with a tetrahedral impurity like 

carbon, makes these 40 electron shell closed system under jellium approximation 

having enhanced stability. The host clusters are known to have distorted icosahedra 

and decahedral geometry respectively. Interestingly, the doped clusters Al12C and 

Ga12C exhibit a perfect icosahedral structure with carbon atom at the center. The bond 

length calculation between the surface and the central atom in all four clusters reveals 

that the presence of carbon shortens the bond lengths between central carbon and 

outer surface atoms. Examination of the various isosurfaces of total charge densities 

brings out the difference in the nature of bonding between the host and the doped 

clusters. Al13 shows a delocalized, well spread charge density while Ga13 shows 

typical covalent bonding. Upon doing, significant changes are seen. For both the 

doped clusters, most of the charge is around the central carbon atom and is spherically 

symmetric. Evidently there is a charge transfer from all surface atoms towards the 

central carbon. This establishes a partial ionic bond between central carbon and 

surface atoms and the size of cluster shrinks. This also results in weakening of the 

bonds on the surface atoms. As a result the melting temperature of the doped clusters 

is lowered than the host clusters. The calculated melting temperatures for Al13 and 

Ga13 are 1800 K and 1200 K respectively while the doped clusters melt at around 800-

900 K. These results are supported by the mean square displacement and root mean 

square bond length fluctuation. 

 Next, we have investigated the finite temperature behavior of smallest gold 

cages namely Au16 and Au17 using ab initio method (chapter four). The nano-gold has 

wide applications as catalysis, medicine, electronic circuits etc. Gold clusters are 

known to exhibit caged structures for n=16, 17 as well as for higher number of atom 

clusters. The stability of these cages at finite temperature is an important issue for the 

application point of view. Here, we have examined the melting, geometry and various 

isomers of the smallest gold cages Au16 and Au17. Au16 is known to be a flat cage 
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while Au17 is a hollow one. We have analyzed almost 50 isomers for both the clusters 

even 0.4 eV above the ground state and we have demonstrated a close relation 

between the isomer energy distribution and melting of the cluster.  Our results show 

that Au16 shows rather a broad specific heat curve ranging from 600 K to 1000 K 

while Au17 exhibits a noticeable peak at 900 K which is identified as a melting peak. 

The analysis of the ionic trajectories and other phase change indicators such as mean 

square displacement and radial distribution function, clearly indicate that Au17 is very 

stable and retains the shape upto 1000 K. Au16 on the other hand, distorts 

significantly. The diffusive motion of the atoms begins at 600 K resulting in 

isomerization and the open cages structures are seen above 1000 K. According to 

Bixon and Jortner, the continuous isomer energy distribution leads to a broad peak in 

specific heat curve while branch-like distribution gives a peak. Our results show that 

Au16 has a continuous isomer energy distribution while that of Au17 is step-like. This 

leads to variation in their behavior at finite temperature. Specific heat curve for Au16 

has a very broad peak ranging from 600 K to 1000 K whereas Au17 has a relatively 

sharper peak.  

 The third problem (chapter five) deals with the electronic structure calculation 

of graphene and graphane via partial hydrogenation. Graphene is a 2D one atom thick 

sheet of sp2 bonded carbon atoms with zero band gap. Although, graphene exhibits 

many novel properties such as ‘linear dispersion at Fermi level, anomalous quantum 

hall effect, Klein paradox etc.’, due to the absence of band gap, it has limitations in 

the use of semiconducting field. Amongst the various ways proposed to open the gap 

in graphene, complete hydrogenation is the effective way. The fully hydrogenated 

structure is called as ‘graphane’ and has a DFT predicted band gap of 3.5 eV. In this 

work, we have probed the transition from zero gap graphene to graphane via 

successive hydrogenation. We have analyzed about 18 systems from 2% 

hydrogenated graphene to 90%H via DFT simulations. The first interesting issue that 

is addressed is the minimum energy configuration of the hydrogen atoms to decorate 

the graphene lattice. Our extensive simulations for different configurations (namely 

random placement of H, 2 islands, different edge patterns etc) of hydrogenated 

graphene show that hydrogens prefer to form a single compact island. We carried out 

such calculations for systems upto 50%H and with 2-3 different unit cells. Next, the 

analysis of the density of states (DOS) close to Fermi level brings out interesting 

features. For low hydrogen concentration, the V-shape DOS in pure graphene is 
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disturbed slightly due to loss of symmetry. As the hydrogen coverage increases there 

is a significant increase in the value of DOS at the Fermi level. The hydrogenated 

carbon atoms are now moved out of the graphene plane, in turn the lattice is distorted 

and the symmetry is broken. As a consequence, more and more k points in the 

Brillion zone contribute to the DOS near Fermi level. The region ranging from 30% 

coverage to about 70% coverage is characterized by the finite DOS of the order of 2.5 

near the Fermi energy. Above 80% or so, there are too few bare carbon atoms 

available for the formation of delocalized π bonds. The value of DOS approaches zero 

and a gap is established with a few midgap states. It may be emphasized that the 

presence of states around the Fermi level giving finite DOS does not guarantee that 

the system is metallic unless we examine the nature of localization of the individual 

states. Therefore we have examined the energy resolved charge densities of the states 

near the Fermi level. A particularly striking feature is the formation of two spatially 

separated regions. The hydrogenated carbon atoms do not contribute to the charge 

density giving rise to the insulating regions while the neighboring bare carbon atoms 

form conducting regions via π bonding. This feature is prominent in the region from 

30%-70% hydrogenated cases giving rise to the channels of delocalized bare carbon 

atoms. Since above 75%H, there are insufficient number of bare carbon atoms to form 

contagious channels, the mid gaps occur. To summarize, as the hydrogen coverage 

increases, graphene with a semi-metallic character turns first into a metal and then to 

an insulator. The metallic phase has some unusual characteristics: the sheet shows two 

distinct regions, a conducting region formed by bare carbon atoms and embedded into 

this region are the non-conducting islands formed by the hydrogenated carbon atoms. 

However it should be noted that hydrogenated systems chosen in this work are such 

that the energy is always minimum. These are the naturally preferred arrangements of 

the hydrogen atoms decorating graphene. The specially designed patterns of 

hydrogenated graphene can yield various band gaps. We have demonstrated such 

designed channels of hydrogenated graphene giving zigzag and armchair edge 

patterns and their effect on the band gap modulation. 

 In the last problem (chapter six), we have investigated the stability and 

confinement effects of graphene and H-graphene nanoribbon (GNR) encapsulating 

inside carbon nanotubes (CNT). GNR are of particular interest because they are 

known to exhibit width dependant band gaps. The recent calculations by two groups 

show that GNR can be stabilized by encapsulating in CNT. In the present work, we 
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have inserted the smallest (20 carbon atom unit cell) graphene and H-graphene 

ribbons inside the carbon nanotubes of diameters ranging from 8Ǻ to 17Ǻ. (The 

confinement effect on the geometry and the stability of the ribbons has been studied.) 

Firstly, the geometries of pure GNR are sensitive to the CNT radii. There is a 

tendency to break the vertical bonds as radius is increased. We observe the formation 

of 2 chains in the largest diameter CNT. The observed DOS for all the structures show 

that there is a substantial enhancement at Fermi energy in all the cases which mainly 

arises from pz and py of GNR atoms. In the largest tube, the 2 chains exhibit 

delocalized charge density and solely contribute to Fermi level. These findings are 

confirmed by the analysis of site projected DOS and partial charge density counters. 

The structure and DOS pattern do not vary significantly for semiconducting CNT 

except for the states at Fermi occur in the gap of the tube. For hydrogenated GNR, we 

have studied 50%H and fully hydrogenated GNR encapsulated in CNT. For 50%H 

case, it has been observed that the geometries inside CNT are sensitive to the 

placement of the hydrogen atoms. The systematically placed hydrogens (on GNR) go 

over in-plane positions and resulting geometries are independent of the diameter 

considered. The structure is planer leading to hydrogen terminated GNR. On the other 

hand, the randomly placed hydrogens show diameter dependant structures retaining 

the tendency to form parallel chains by breaking the vertical bonds in large diameter 

tubes; however structures are modulated by strong C-H bond leading to displacements 

of carbons away from planer or linear shape. Lastly, we have examined fully 

hydrogenated GNR. Remarkably the optimized geometries are not sensitive to the 

diameter at all. The final structure remains the same, namely two parallel chains in all 

types of CNT. In the present case the carbon atoms show zigzag arrangement, as each 

atom is pulled by the attached hydrogen. The two chains are symmetrically placed 

with respect to the tube axis due to stronger confinement. The DOS for both types of 

tubes show enhancement at Fermi level. The isosurfaces of partial charges densities 

clearly show delocalized nature along the two chains which arises from the pz orbitals 

of GNR carbons atoms. The contribution of both the chains is equal unlike in the case 

of pure GNR. In semiconducting tube, we get two stable conducting channels. Our 

results bring out the possibility of tuning the geometries of GNR and H-GNR inside 

CNT of different diameters to obtain one dimensional or two dimensional structures. 
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1. Introduction 

 

1.1 INTRODUCTION TO CONFINED SYSTEMS 

In the past decade the low dimensional systems have become the subject of immense 

research interest. These mainly refer to the structures that extend to less than three 

dimensions and belong to the class of materials intermediate to that of atomic and 

bulk scales. The typical length scale of these systems falls in nanoregim that is in the 

range of few to few hundred nanometers1. In recent years some novel materials such 

as clusters, quantum dots, nanotubes, nanowires and two dimensional systems like 

graphene have been the focus of current research. 

An interesting feature shared by all such systems is ‘confinement’; that is the 

atoms and consequently the electrons are restrained to move in less than 3 

dimensions. For example, low dimensional systems such as carbon nanotubes (CNT), 

graphene nanoribbons (GNR) and graphene are confined in two and one dimensions 

respectively while clusters are confined in all the directions. One may view these 

examples as confinement imposed due to reduced dimensionality. The other way is to 

physically confine the systems such as encapsulation with nanotube where the 

confined systems are restricted due to the outer boundary of the tube. Indeed the 

effect of such confinements on the geometry, electrical, chemical and mechanical 

properties is a subject of immense research interest. The present thesis examines the 

properties of some confined systems – 1. Clusters (zero dimensional systems) 2. 

Graphene and graphane (two dimensional systems) and 3. GNR encapsulated in 

CNT. 

Clusters are ‘self confined’ due to the interactions between the atoms, leading 

to various shapes and geometries and are considered as zero dimensional systems. 

The finite size of the clusters makes them distinct from the single ‘atom’ and infinite 

‘solid’. During the past decade, atomic clusters have attracted much attention due to 

their importance in understanding nanoscale materials [1,2]. It is now well established 

that the physical and chemical properties of such finite size systems are 

                                                           
1 One nanometer spans 3-5 atoms in a row. 
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different from their bulk counterparts [3, 4, 5, 6, 7, 8, 9] in terms of the geometry, 

nature of bonding, electronic, magnetic and thermodynamic properties. The clusters 

have been largely investigated (via experiments and simulations) due to the possibility 

of building ‘superatom’ and ‘cluster assembled materials’ [10, 11]. We shall review 

some interesting properties of clusters in section 1.4 in details. 

Next, the nanotubes, nanowires and nanoribbons are specially constructed one 

dimensional systems. Carbon nanotubes are the members of the fullerene structure 

family, which also includes the spherical buckyballs. The carbon nanotubes being 

conducting or semiconducting are extremely useful in nanotechnology, electronics, 

optics and other fields of material science. Graphene nanoribbons (GNR) are one of 

the recent findings belonging to one dimensional system. These are the unzipped 

carbon nanotubes having zigzag or armchair type of edge patterns. GNR fascinate the 

researchers because they show width dependant band gap mechanism which is the 

outcome of one dimensional confinement. 

A recently synthesized ‘graphene’ is one of the most exciting discoveries in 

this century.’ It is one atom thick, two dimensional sheet of sp2 bonded carbon atoms 

having unique properties. The Nobel Prize for the year 2010 was awarded to Andre K. 

Geim and Konstantin Novoselov for “the groundbreaking experiments regarding the 

two-dimensional material of graphene”. The single layered honeycomb structure of 

graphene makes it the “mother” of all carbon-based systems. The commonly found 

graphite is simply a stack of graphene layers bonded by weak Van der Waals 

interaction. Next, carbon nanotubes are made of rolled-up sheets of graphene while 

the buckyballs are nanometer size spheres of wrapped-up graphene. All these forms of 

carbon were isolated long before graphene and have been used in many applications, 

but their electric, magnetic and elastic properties originate from the peculiar structure 

of graphene. Graphene is a semimetal with zero band gap. It shows a linear dispersion 

relation at Fermi level. The low energy electrons in graphene behave like massless 

Dirac fermions and are governed by Dirac equation. This peculiar property enables 

the electrons to travel for large distance without scattering or in other words graphene 

possesses very high electron mobility. Undoubtly, graphene has been a potential 

candidate for the applications in many areas such as electrodes, solar cells, ultra 

capacitors etc. Graphene based nanomaterials form a class of novel two dimensional 

systems that are being explored for various applications in nanotechnology. Apart 
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from the unique dispersion relation, graphene also possesses number of exotic 

properties that are discussed in section 1.2. However, due to the absence of the band 

gap graphene is not suitable for electronic applications like transistors and diodes. 

Number of methods have been proposed so as to open a gap in graphene; fluorination, 

hydrogenation, vacancies or defects being some of the noticeable examples. Amongst 

these a beautiful example is completely hydrogenated graphene, called as graphane. 

Importantly, it yields a band gap of 3.5 eV as predicted by density functional theory. 

As a result of hydrogenation, the original sp2 bonding in graphene is modified to sp3-

like in graphane. We shall have more discussion on graphane in section 1.2. 

So far we noted the systems that are naturally confined. However it is possible 

to physically confine the systems by encapsulating the atoms, molecules or clusters 

inside a nanotube. The idea is to use the hollow space as a natural confinement for 

inserting the atoms and molecules. Such a confinement can be used as a chemical 

reactor [12]. The interactions of the confining material with the enclosed atoms may 

play a role in determining the properties of the system. Indeed the idea has been 

probed with clusters, chains of carbon atoms and water molecules being inserted 

inside carbon nanotubes via experiments and many via simulations. One of the 

reasons of such confinement is to achieve the stable nanostructures which are highly 

difficult in free space. Recently an experimental synthesis showed that stable 

graphene nanoribbons are possible by encapsulating in carbon nanotube [12].  

Yet important another class not addressed in the present work is quantum dots 

(QD). A quantum dot is defined as a system of interacting electrons in external 

confining potential. These are zero dimensional systems experimentally realizable due 

to advances in the fabrication technology. Because of their similarities with the 

atomic structures, they are considered as the artificial atoms. The quantum dots, 

formed by confining two dimensional gases are highly tunable in terms of the number 

of electrons and size. Therefore they represent important paradigms for investigating 

various properties of interacting many body systems. Their applications vary from 

single electron transistor, spectral detectors, lasers to even quantum computing. For 

more details on the topic, the reader can refer [13, 14, 15, 16]. 

The key to understand and analyse many of the properties of such confined 

systems is the ‘electronic structure’. By this we mean the analysis of the nature of 

orbitals, density of states, eigenvalues, band gaps, HOMO-LUMO gaps etc. We 
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illustrate this by showing the DOS for simple jellium model for bulk, two, one and 

zero dimensional systems in figure 1.1  

 

 
 

Figure 1.1 - The DOS per volume and energy for free electron gas in 3D (blue curve), 
2D (red curve), 1D (green curve) and zero dimensional system (black lines). 
(http://ecee.colorado.edu/~bart/book/welcome.htm) 

 

DOS are the number of accessible energy states in the small energy interval E to 

E+dE. In the simple free electron model the dramatic difference in DOS is seen as the 

dimensions are lowered. In 3D system, the DOS are proportional to the square root of 

total energy as shown by blue line in figure 1.1. The DOS in two dimensions is 

constant and does not depend on the energy. In zero dimensional case we expect a 

delta function. This example brings out the effect of dimensionality on the electronic 

structure properties. In short, the physics of low dimensional systems is different and 

interesting. 

The theme of the present thesis is to explore the electronic structure of graphene, 

hydrogenated graphene (2D systems), GNR encapsulated carbon nanotubes (1D 

system) and the thermodynamic properties of clusters (0D systems). The specific 

problems we have investigated are: 
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1. Thermodynamic for carbon doped Al13 and Ga13 clusters. 

2. Melting transition in small gold cages namely Au16 and Au17. 

3. Electronic structure of graphene and graphane. 

4. Graphene nanoribbons encapsulated inside carbon nanotubes. 

In the first problem, we have investigated the role of carbon as a dopant on the 

melting of Al13 and Ga13 clusters. The 13 atom aluminum and gallium clusters are iso-

electronic and are known to have different type of bonding. Their ground state 

geometries are symmetric and ordered ones, namely icosahedra and decahedra. The 

substitution of a single carbon makes both these clusters 40 electrons closed shell (in 

jellium sense) showing enhanced stability. Both the doped clusters exhibit perfect 

icosahedral symmetry. We have carried out ab-initio molecular dynamic simulations 

of pure Al13, Ga13 and Al12C, Ga12C clusters to understand the melting phenomenon.  

The second problem is the finite temperature analysis of the smallest cages of 

gold namely Au16 and Au17. The gold nanoparticles are potential candidates in area of 

catalysis. The gold clusters undergo planer to non planer transition at n=7-10. There 

are experimental reports of the smallest cages of gold at n=16, 17. We have examined 

the ground state geometries, isomer distribution and melting features of both the 

clusters via simulations. It has been observed that there is a close association between 

the isomer energy distribution and the melting temperatures. 

In the third problem, the electronic structure of two dimensional pure and 

hydrogenated graphene (graphane) has been investigated. Graphene is a zero gap 

semi metal while graphane is a semiconductor. The aim of the problem is to 

understand the way band gap opens upon hydrogenation. We have carried out series 

of extensive calculations for graphene system with concentration of hydrogen ranging 

from 0% to 100%. In addition, we also demonstrate that the designed channels of 

dehydrogenated graphane can be used to tune the band gap. 

Pure and hydrogenated GNR encapsulated in CNT are investigated in the forth 

problem. Here, we examine the confinement effect of CNT with different radii on the 

geometry of pure and H-GNR. It is also observed that the placement of hydrogen 

plays an important role in stabilizing GNR inside CNT. The motivation for this work 

mainly comes from the recent experimental work by A. Talyzin et.al. [12]. They have 

explored very simple and efficient chemical synthesis method for preparation 

hydrogen terminated GNR encapsulated in single walled CNT. Formation of the GNR 
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is possible due to confinement effects provided by the one-dimensional space inside 

nanotubes.  

We close this section with some comments on the theoretical methods. 

Throughout this work we have used Density Functional Theory (DFT), a well 

established method to investigate the electronic structure of many body systems. For 

the thermodynamic data, Born Oppenheimer molecular dynamics is used. We have 

calculated the specific heat using multiple histogram technique. Additionally, 

standard phase change indicators such as ‘mean square displacements’ (MSD) and 

‘root mean square bond length fluctuations’ (δrms) are also estimated. The detailed 

discussion on the above methods is given in Chapter 2. 

 

1.2  ELECTRONIC STRUCTURE OF GRAPHENE AND GRAPHANE 

There has been a tremendous literature on graphene. Here we present the basic 

structure and few relevant properties of graphene followed by some interesting 

aspects of hydrogenated graphene that is graphane. At the end we will briefly review 

the methods of graphene synthesis. 

 

1.2.1 Basics of Graphene and Graphane  

 

Graphene is purely two dimensional material. It consists of one atom thick monolayer 

of the carbon atoms arranged in a hexagonal lattice as shown in figure 1.2-(a). The 

carbon atoms are sp2 hybridized with the bond length of 1.42Å. It can be also viewed 

as a single isolated sheet of graphite. Graphene was first isolated by Geim, Novoselov 

and group in series of experiments in 2004 [17, 18, 19]. The tight binding calculations 

show that it is a semimetal with zero band gap. The hexagonal Brillouin zone consists 

of two inequivalent k points, namely K and K’, called as Dirac points at which there 

is no gap. The conduction and valence bands meet at the Dirac points. Close to these 

crossing points, the electron energy E(k) depends linearly on the wave vector k 

obeying the relativistic Dirac equation. Thus electrons and holes in monolayer 

graphene are called Dirac fermions [18]. This peculiar property is an outcome of the 

triangular bipartite lattice as well as the typical sp2 bonding of the carbon atoms. 

Section 1.2.2 covers the lattice structure of graphene in details. 
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     (a) 

 
                             (b) 

 
Figure 1.2 - (a) Structure of graphene. The carbon atoms are in-plane and sp2-
bonded in graphene. (b) Graphane in chair conformer. The hydrogen atoms are 
attached in an alternating manner to each carbon. The graphane structure is no more 
planer as hydrogens pull the carbon atoms. 
 

Graphane, as stated earlier is completely hydrogenated graphene. It was first 

proposed by Sofo et.al. [20] and later experimentally synthesized by Elias et.al. [21]. 

In graphane the hydrogen atoms are attached in alternating manner to the carbon 

atoms with respect to the underlying plane. Since the underlying lattice is triangular 

bipartite, all hydrogens placed above the plane belong to one sublattice while those 

placed below the plane belong to different sublattice. This type of conformation is 

called as ‘chair-like conformer’ and is shown in figure 1.2-(b). Graphane exists in 

another type of conformation in which a pair of hydrogens is attached to the adjacent 

carbon atoms. Such an arrangement is called as ‘boat-like conformer’. Both the 
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structures show a band gap of 3.5 eV and 3.7 eV as calculated by DFT2, while GW 

method reports value of 5.4 eV for chair conformer [22]. Amongst these 

configurations, the chair conformer turns out to be energetically favored. In both types 

of configurations, the hydrogenation disturbs the planer geometry of graphene thereby 

pulling the carbon atoms above the plane. 

We give the bird’s eye view of the effect of hydrogenation on graphene. This 

subject is being intensely explored because of the possible applications. In pristine 

graphene, each carbon atom is sp2 bonded with three neighboring carbon atoms 

leading to three planer σ bonds. These being filled form a deep valence band. The 

unpaired pz orbital which is perpendicular to the plane binds covalently with 

neighboring carbon atom forming π band. Since each pz orbital has one electron, π 

band is half-filled. A set of these π boned orbitals gives rise to a peculiar conductivity 

in graphene. Upon complete hydrogenation, these unpaired π orbitals are bonded to 

hydrogens and are no more available for conduction. As a consequence the band gap 

opens up. The original sp2 bonding is now modified into sp3-like with the calculated 

c-c bond lengths in chair conformer to be 1.52Å [20]. This bond length is close to that 

of 1.53Å in case of diamond. The band structure and density of states for graphane in 

chair conformer are shown in figure 1.3. It shows a direct band gap of 3.5 eV at τ 

point. This is interesting because graphene is gapless at K point while in graphane the 

gap at K point is as large as 12 eV. In the present work, we have examined the way 

this direct band gap opens as graphene is hydrogenated successively from low 

hydrogen concentration to full.  

Graphane has been found to be the most stable amongst other hydrocarbons 

having C: H ratio 1:1. In the experimental study by Elias et.al., graphane was seen to 

be stable at room temperature for many days and showed the same characteristics 

during repeated measurements [21]. In the same experiment, it was reported that 

insulating graphane returned to its original metallic state (graphene) upon the removal 

of hydrogens by annealing. Because of its high volumetric hydrogen density it is a 

promising candidate for hydrogen storage devices. There are few reports on the partial 

hydrogenation of graphene which explore many other interesting aspects of 

hydrogenated graphene. DFT calculations carried out by Boukhvalov [23] and Casolo 

 
                                                           
2 As of now there are no experimental reports on the band gap and available theoretical values also 
differ. 
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Figure 1.3 - The band structure and density of states of pure graphane. The band 
gap of 3.5 eV is seen at Τ point while at K point the band gap is large. 

 

[24] show that single or double hydrogens chemisorbed on graphene sheet give rise to 

small magnetic states. These results also confirm that the arrangement of hydrogens 

which minimizes the lattice imbalance is favored. Decorating graphene lattice with 

triangular arrays of hydrogens is studied by Wu et.al. [25]. They show that each 

carbon triangle possesses notable magnetic moment on the edges. Further, the band 

gap calculation in partially hydrogenated graphene is shown to be sensitive to the 

edge patterns [26]. Based on these findings, the graphene quantum dots and 

hetrojunctions have been proposed. A DFT work by Zhou and co-workers report the 

one sided de-hydrogenation of graphane resulting in an ordered ferromagnetic state 

[27]. For low hydrogen concentrations (upto 10%H), the calculations by Bang show 

that the conductance through low energy propagating channels decay exponentially 

with sample size [28]. Apart from the above reports, there are few recent calculations 

examining the effect of hydrogenation on the band gap. The surface doping and band 

gap tunability in hydrogenated graphene has been studied by Matis et.al. [29]. With 

photoemission spectroscopy, Haberer and group demonstrate that a tunable gap in 

quasi-free-standing monolayer graphene on gold can be induced by hydrogenation 

[30]. The size of the gap can be controlled via hydrogen addition and reaches 1.0 eV 

for hydrogen coverage of 8%. Recently, Pujari and co-workers [31] showed that 
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single-side-hydrogenated graphene is a semiconductor with an indirect band gap of 

1.35 eV, which is in between the gapless graphene and wide band-gap graphane.  

 Although hydrogenation of graphene has been under a series of investigations, 

two important issues are not addressed so far. First, as of now there are no findings on 

the minimum energy configuration for hydrogen atoms to decorate the graphene 

lattice. Second, the evolution of the band gap as one goes from pure graphene to 

graphane via hydrogenation is still unexplored. These problems are examined in the 

present work. We have carried out DFT work to compute the electronic structure of 

graphene, graphane and partially hydrogenated graphene from 0% to 100% hydrogen. 

The objective of our work is to obtain the insight of the way gap opens. Additional, 

we have also calculated the patterned hydrogenated graphene sheet to study the band 

gap modulation. 

 

1.2.2 Lattice structure of graphene 

 

The basic underlying structure for graphene, graphane, graphene nanoribbons and 

carbon nanotubes is two dimensional hexagonal lattice of carbon atoms. The unique 

properties exhibited by these materials arise from the collective behavior of electrons. 

In the present section, we will review some interesting features of this 2D structure. 

The hexagonal lattice of graphene can be considered as square Bravais lattice 

with two point basis. The primitive cell is denoted in figure 1.4-(a) by red square, 

enclosing two carbon atoms. The other commonly adopted way is to construct two 

triangular lattices interpenetrated with each other as shown in figure 1.4-(a) by blue 

and yellow triangle. Figure 1.4-(b) shows a closer view of atoms A and B belonging 

to the different sub lattices.  The lattice vectors are given by  

 

�� � �� ��� 	�
�  

(1.1) �� � �� ���
�	�
  

            

 

where ‘a’= 1.42Å is the carbon-carbon distance. 
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  (a) 

                       

 
       (b) 

 

Figure 1.4 – (a) The Graphene honeycomb lattice with two point basis. (b) The same 
lattice formed with two triangular sub lattices and corresponding reciprocal lattice [32] 
 

Using translational vector R = n1a1 + n2a2, the entire hexagonal lattice is generated. 

The corresponding reciprocal lattice having hexagonal symmetry is shown in figure 

1.4-(b), with b1 and b2 as reciprocal lattice vectors, given by 

 

�� ������ ��� 	�
  

(1.2) 

�� ������ ���
	�
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The Wigner-Seitz cell of the reciprocal lattice (first Brillion zone) shown in the figure 

has two symmetry points K and K’ which are of particular importance. These are 

called as Dirac points and their coordinates in reciprocal space are given by  

 

� � ������ � ���	��� 
 

(1.3) 

�� ������� � 
� ���	��� 
 

 

The tight binding Hamiltonian for graphene considering the hoping to nearest and 

next-nearest neighbors is  

 

� � �
� ������� ���� � � ! "�#$���%���&�� � � ������ ���� ������� ���� � � ! "�#%%���&&��  (1.4) 

 

Where �'��(���'�(� 
 annihilates (creates) an electron with spin σ (σ = ↑,↓) on site Ri on 

sublattice A, ) is the near neighbor hopping energy (hopping in different sublattice), )� is the next nearest neighbor hopping energy (hopping in the same sublattice). The 

energy bands derived from this Hamiltonian have the form, 

 *+��,
 � �+)-� � .�,
 
�)�.�,
� (1.5) 

.�,
 � � "/0�	��12�# � 3 "/0 4	�� 12�5 "/0 ��� 16�� 
 

           

The + sign applies to upper (π) and – sign applies to lower (π*) band. The above 

dispersion relation gives rise to the peculiar conical shape at Fermi energy as shown 

in figure 1.5. Note that the valence band and conduction band meet only at two points, 

K and K’ (Dirac points) making graphene a zero gap semimetal. 
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Figure 1.5 – Dispersion relation in graphene. Inset: energy bands close to Dirac 
points. [32]  
 

The inset figure zooms the band structure near one of the Dirac points. Actually there 

are two sets of three Dirac points, two of which are inequivalent, denoted by K and 

K’. The upper half of the energy dispersion are anti-bonding orbitals (π*) while lower 

half represents the bonding (π) orbitals. The obvious reason for the existence of this π-

π* complexity is the partially occupied pz orbitals of the carbon atoms. The upper π* 

band and lower π band are degenerate only at K point at Fermi level and the energy E 

in the equation 1.5 is linear with momentum k, given as E(k)  = ± ħ υ |k| [32, 33], 

where υ is the velocity of the electron. Electrons in the neighborhood of Fermi points 

K and K’ have a linear dispersion relation and are well-described by the Dirac 

equation for massless fermions. That is, the effective mass of the charge carriers in 

this region is zero. Since this is similar to the relativistic particle, the low energy 

physics in graphene is well described by Dirac equation. 

 

1.2.3 Graphene : Synthesis and Properties 

 

The experimental synthesis of graphene is carried out by different ways. We shall 

quote some of the important methods here. Graphite oxide reduction was probably 

historically the first method of graphene synthesis that was reported by P. Boehm in 

1962 [34, 35]. In this early work existence of monolayer reduced graphene oxide 

flakes was demonstrated. Graphite oxide exfoliation is achieved by rapidly heating 
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and gives highly dispersed carbon power with some graphene flakes. Today graphene 

synthesis is carried out with much sophisticated ways.  

1. Mechanical exfoliation - In 2004, the Manchester group led by Novoselov and 

Geim [17] first isolated graphene planes using adhesive tapes. The graphitic 

crystals are repeatedly split into thinner pieces. The tape along with the 

attached optically transparent flakes, is dissolved in acetone and after a few 

further steps, the flakes including mono layers are sedimented on a silicon 

wafer. Individual atomic planes of graphite are then hunted in an optical 

microscope. Using this technique single layer graphene flakes with dimensions 

of up to 10 µm could be generated. The technique is then refined and dry 

depositions are now used where eventually up to 1 mm graphene sheets are 

obtained. It is referred as Scotch tape or drawing method. However, the 

process is limited to small sizes and cannot be scaled for industrial production. 

(See figure 1.6) 

2. Epitaxial growth on silicon carbide– In another method silicon carbide (SiC) is 

heated to high temperature (> 1100C) [36]. The face of the SiC used for 

graphene formation, silicon or carbon terminated highly influences the 

thickness, mobility and carrier density of the graphene. Many important 

properties of graphene have been identified via this method. Epitaxial 

graphene on SiC can be patterned using standard microelectronics methods. 

The possibility of large integrated electronics on SiC epitaxial graphene was 

first proposed in 2004, [37] and a patent for graphene-based electronics was 

filed provisionally in 2003 and issued in 2006.  Since then, important advances 

have been made. In 2008, researchers at MIT Lincoln Lab produced hundreds 

of transistors on a single chip and in 2009, very high frequency transistors 

were produced at the Hughes Research Laboratories on monolayer graphene 

on SiC.  

3. Chemical vapor deposition - In contrast to the thermal decomposition of SiC, 

where carbon is already present in the substrate, in chemical vapor deposition 

(CVD), carbon is supplied in gas form and a metal is used as both catalyst and 

substrate to grow the graphene layer. 
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Figure 1.6 – Single atom thick sheets of graphene obtained by adhesive tapes as 
shown in scanning electron micrographs. (Foundation of Fundamental Research on 
Matter, Netherlands) 
 

There are other methods such as growth from metal carbon melts, growing graphene 

on metal substrate, from carbon nanotubes. The various important methods of 

graphene synthesis alongwith the discussion on band structure is discussed in detail in 

a review article ‘experimental review of graphene’ by Cooper and group [38]. 

We shall now turn to look at few important properties of graphene although it 

is simply impossible to cover all of these in details. We shall begin by noting the 

electronic properties first. As stated earlier, one of the most interesting aspects of 

graphene is its low-energy excitations are massless, Dirac fermions. This particular 

behavior mimics the physics of massless fermions, except for in graphene, the 

electrons move with the speed of Fermi velocity which is 300 times smaller than the 

speed of light. There are number of excellent reviews [17, 18, 39, 40] discussing the 

electronic structure of graphene including a well cited article by Castro Neto et.al. 

[32].  

Turning towards the transport mechanism, the experimentally measured 

electron mobility in graphene is remarkably high [17], up to 15,000 cm2/V.s at room 

temperature. The quantum transport theory in graphene is elaborated in review article 

by Young and Kim [41]. The unique properties of graphene are highlighted by 
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comparing the carrier transport in graphene and in two-dimensional semiconductor 

systems by Sarma and co-workers [42]. 

Graphene also shows remarkable optical properties. For example, it can be 

optically visible despite being only a single atom thick. The optical as well as 

electronic properties and their utilization in electronic and optoelectronic devices in 

graphene is well addressed in few reviews [43, 44]. The high electrical conductivity 

and high optical transparency promote graphene as a candidate for transparent 

conducting electrodes, required for applications in touch-screens, liquid crystal 

displays, organic photovoltaic cells and organic light-emitting diodes (OLEDs) [45].  

Graphene is known to be the strongest material ever tested with the strength 

more than 200 times than steel [46]. It should thus be possible to make an almost 

invisible hammock out of graphene and if it was 1m2 large it would hold 

approximately 4 kg heavy burden though its own weight would be less than mg. Its 

entire volume is exposed to the surrounding due to its 2D structure, making it very 

efficient to detect adsorbed molecules.  

The recent review article by Balandin covers the various aspects of thermal 

properties of carbon based materials including graphene [47]. The thermal 

conductivity of graphene has also been measured with different graphene samples by 

various groups and is found to be in between 3080-5000 W/mK [48, 49, 50, 51] which 

is 10 times better than that of copper. These number are dependent on the graphene 

sample, that is for supported graphene and GNR these numbers are found to be 

smaller.  

The story of graphene further continues to bring up few spectacular effects 

such as chirality, Klein paradox and anomalous quantum Hall Effect. The detail 

discussion on these is out of the scope of this work. The reader is referred to some 

good reviews for the details of these phenomena [17, 18, 19, 52]. 

In spite of all this excitement, the absence of band gap puts a limit on the use 

of graphene in semiconducting devices. Intense work is going on so as to retain most 

of the properties of graphene but still open a band gap. This leads to hydrogenation 

[53, 54], graphene nanoribbons, substrate doping [55, 56, 57, 58, 59], symmetry 

induced gap [60] etc.  

We close this section by noting other 2D material, boron-nitride sheet (BN 

sheet) which is known to be wide gap semiconductor. It shares the same honeycomb 
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lattice structure as graphene. Its electronic properties can be tuned by various 

methods. 

 

1.3 PURE AND HYDROGENATED GNR INSIDE CARBON NANOTUBES 

Yet another promising graphene based materials are carbon nanotubes (CNT) and 

graphene nanoribbons (GNR). The properties of theses one dimensional novel system 

are being analyzed extensively due to their ability to modify the band gap with 

various parameters like width, edge patterns and encapsulation with impurity. In this 

section, we shall take the review of GNR and CNT and understand the ways to 

functionalize CNT.  

 

1.3.1 Graphene nanoribbons  

 

A class of quasi one dimensional nanomaterials of recent research interest is graphene 

nanoribbons (GNR). These are thin, elongated strips of graphene which were first 

introduced as a theoretical model by Fujita and co-workers [61, 62, 63] to study the 

edge effects in graphene. There are two types of edge patterns observed in GNR, 

zigzag and armchair arising from the termination of graphene and they show very 

different electronic properties arising from their contrasting boundary conditions. 

Figure 1.7 shows the zigzag (Z-GNR) and armchair (A-GNR) with distinctly different 

edge patterns. Note that in zigzag GNR, the atoms at the edge belong to same sub 

lattice and the unit cell (shown in an enclosed rectangle) contains ‘A’ type of atoms 

alternating with B type. The width of Z-GNR is approximately given by 7 � 89 	��, 

N being the number of atoms in unit cell and � being the lattice constant. In an 

armchair GNR, the edge atoms contain a dimer ‘A-B’ with width�7 � �89 �. The 

dangling σ-bonds at the edge are generally passivated by hydrogen atoms. The tight 

binding calculations show that Z-GNR is always metallic while A-GNR can be 

metallic or semiconducting. An interesting feature seen in GNR is ‘width dependant 

band gap’.  

We shall briefly note some important work on the GNR. The first principal 

calculations by Louie’s group [64] confirm the occurrence of band gap in both types 

of GNR and is variable as the width is changed. The comparison with the tight 
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binding calculations is also discussed in their work. The electronic states of narrow 

GNR are studied by Brey and Fertig using Dirac equations [65]. Their results confirm 

that the armchair GNR can be metallic or insulating depending on the width. A recent 

experiment by Kim’s group demonstrates the band gap modulation by lithographic 

processes [66]. The defects that occur in lithographic technique are eliminated in 

GNR fabricated by high-temperature hydrogen annealing of unzipped carbon 

nanotubes. The GNR are of width ∼100 nm and show a large intrinsic energy 

bandgap of ∼50 meV [67]. There are few other techniques and methods in which the 

band gap modulation has been demonstrated [68, 69]. Barone et.al. present a DFT 

analysis of bare and hydrogen-terminated ribbons with different edge nature and 

widths up to 3 nm [70]. Their results predict that in order to produce materials with 

band gaps similar to Ge or InN, the width of the ribbons must be between 2 and 3 nm. 

If larger bang gap ribbons are needed (like Si, InP, or GaAs), their width must be 

reduced to 1-2 nm. There are good review articles covering the basic theoretical 

aspects of electronic and magnetic structure of GNR [71, 72] while few novel 

properties are reviewed by Dutta and Pati [73].  

 

 
 

(a) Zigzag GNR                  (b)  Armchair GNR  

 

Figure 1.7 – (a) Zigzag GNR with atoms A and B alternately arranged along the edge 
(b) Armchair GNR with A-B dimer forming the edge pattern [71]. Note that the 
coordinate axis in (b) is rotated 90◦, with respect to (a). 
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The production of high quality GNR with smooth edges and well-defined widths is a 

crucial point in GNR synthesis. Several routes have been proposed for the same; For 

instance, Dai and co-workers [74] have obtained GNR by unzipping multiwalled 

carbon nanotubes (MWNT) by plasma etching of nanotubes partly embedded in a 

polymer film. In another work, Dai’s group notice that few layer nanoribbons can be 

produced by unzipping mildly gas-phase oxidized MWNT using mechanical 

sonication in an organic solvent [75]. The GNR so obtained have smooth edges and a 

narrow width distribution. Tour and co-workers synthesized GNR by lengthwise 

cutting of MWCNT by a simple, efficient, and scalable oxidation method [76]. Figure 

1.8 shows a pictorial representation of few of the methods for GNR synthesis 

employed using CNT. 

 

 

 
 

Figure 1.8 – (a) SWNT and GNR (b) plasma etching of partially embedded CNT (c) 
longitudinal cutting of CNT by chemical attack (d) intercalation of alkali metal atoms 
followed by exfoliation of CNT and (e) metal particle catalyzed cutting of CNT (f) Final 
GNR [77]. 
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Next, the lithographic techniques are commonly used to produce GNR with controlled 

edge orientations [66, 78]. Cai et.al. demonstrate the fabrication of GNR by surface 

assistated coupling of molecular precursors [79]. The topology, width and edge 

periphery of the GNR are defined by the structure of the precursor monomers. There 

are number of methods investigated using the chemically fabricated GNR through 

various methods [80, 81, 82, 83, 84, 85, 86, 87]. The termination of GNR with 

oxygen, carbon dioxide, water and ammonia is carried out in a DFT work by 

Seitsonen and group [88]. Their results predict that neutral GNR in oxygen-rich 

atmosphere should preferentially be along the armchair direction while water-

saturated GNR should present zigzag edges. GNR are also produced by cutting 

graphene sheet [89, 90]. A very recent fabrication technique for graphene nanoribbons 

(GNR) employs copper oxide nanowires as the etch masks [91]. The various methods 

of GNR synthesis with advantages and disadvantages are addressed in a mini review 

by Ma and co-workers [77].  

One of the simple ways to obtain the stable GNR is encapsulation inside 

carbon nanotubes. Recently, two experimental groups by Talyzin et.al. [12] and 

Chuvilin et.al. [92] have independently demonstrated the formation of such stable 

structures. Talyzin and co-workers [12] propose an experimental technique for the 

synthesis of H-terminated GNR inside SWNT using thermally induced fusion of 

coronene and perylene molecules. Carbon nanotubes in this reaction provide one-

dimensional alignment of molecules required for the fusion reaction into graphene 

nanoribbons. The other work by Chuvilin et.al. demonstrates that GNR can be self-

assembled from a random mixture of molecular precursors within a single-walled 

carbon nanotube. The sulphur terminated GNR are otherwise unstable in free state.   

Motivated from these recent findings, we employ the DFT study of pure as 

well as hydrogenated GNR inside CNT. We wish to examine the effect of 

confinement on the geometry of pure GNR and H-GNR as a function of CNT radii. 

Our results suggest that the encapsulated structures are sensitive to the placement and 

concentration of hydrogen in GNR.  
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1.3.2 Carbon nanotubes  

 

CNT are ‘graphene sheets seamlessly wrapped’ to form cylindrical one dimensional 

tube. They have typical diameters in nanometer range and can extend up to few 

millimeters long. They were first synthesized by Iijima [93] in 1991. These tubular 

nanostructures are metallic or semiconducting and have wide applications in the field 

of nanotechnology, electronics and optics. There are mainly two types of CNT – 

single walled carbon nanotubes (SWNT) and multiwalled carbon nanotubes 

(MWNT). SWNT are formed by rolling a single graphene sheet into a cylinder while 

MWNT have more than one SWNT arranged like concentric rings. The open ends of 

CNT are normally passivated by hydrogen atoms. The original carbon nanotubes 

produced in 1991 were in fact MWNT having outer diameter range of 4-30 nm and 

length up to 1 µm [93]. A schematic picture shown in figure 1.9 represents the way 

graphene sheet is rolled to form a CNT. Imagine the graphene sheet to be cut along a 

dotted line indicated by ‘T, tube axes. The armchair line is drawn such that it cuts 

each hexagon into 2 halves.  

 

 
Figure 1.9 – A representation of graphene sheet rolled to form a carbon nanotube. 
The chirality vector, zigzag and armchair vectors are shown. (Image courtesy: 
http://www.wikipedia.org) 
 

http://www.wikipedia.org/
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Ch represents the chiral vector given by  Ch = na1+ ma2 , where a1 and a2 are unit 

vectors of graphene,  the angle φ between Ch and armchair line determines the way 

sheet is rolled to form a tube . If 0<φ<30, then CNT is called chiral. The values of n 

and m determine the chirality or twist which in turn affects the conductivity of 

nanotubes. For m=0, all the nanotubes are of ‘zigzag’ type. If n=m, then the 

nanotubes are called as ‘armchair’. For all the other values of n and m, the tubes are 

called as ‘chiral’. The following simple rule determines the conducting nature of the 

CNT.  

If     ;<=>   = integer, then the CNT is metallic 

   ≠ integer, then CNT is semiconducting. 

 

All armchair tubes are metallic. Theoretically, metallic nanotubes can carry an electric 

current density of 4 × 109 A/cm2, which is 1,000 times greater than that of metals such 

as copper. The three types of nanotubes discussed above are shown in figure 1.10. 

Their names are consistent with the pattern formed along their edge. The diameter of 

CNT is dependent of the values of n, m and the lattice constant of graphene. It is 

calculated as: ? � � @A 	BC �DC � BD 

 

where a is the lattice constant of graphene = 2.46Å. 

 
(a) Zigzag (10,0)   (b) Armchair(6,6)     (c)  Chiral (5,2) 

 

Figure 1.10 - Three types of carbon nanotubes formed by the way the graphene 
sheet is rolled. The numbers in the bracket indicate n,m parameters. 
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Theoretical calculations show that the electronic properties of the CNT are very 

sensitive to their geometric structure [94]. Although graphene is a zero-gap 

semimetal, CNT can be metallic or semiconducting with varying energy gaps, 

depending on the diameter and helicity of the tubes, i.e. on the indices (n,m). The 

physics behind such sensitive nature can be understood within a band-folding picture. 

We know that the electronic structure of graphene near the Fermi energy is given by 

an occupied π band and an empty π* band. These two bands meet at ‘K’ point as 

shown in figure 1.11-(a) .When forming a tube, owing to the periodic boundary 

conditions imposed in the circumferential direction, only a certain set of k states of 

the planar graphene sheet are allowed. The set of allowed k values indicated by the 

lines in figure 1.11-(b) depend upon the diameter and helicity. When the point ‘K’ is 

not included, the system is a semiconductor with different sized energy gaps. CNT 

has a finite circumference C which quantizes the momentum around the tube. It is 

conducting if the quantized momentum matches a Dirac point.  

 

 
 

Figure 1.11 – (a) Band structure of graphene showing main high symmetry points (b) 
Allowed k vectors of CNT mapped onto graphene Brillion zone. [95] 
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CNT Synthesis  

The various methods of CNT synthesis include arc discharge, laser ablation, chemical 

vapor deposition (CVD) or high pressure carbon monoxide (HiPCO). The nanotubes 

were first observed in 1991 [93] in the carbon soot of graphite electrodes during an 

arc discharge, by using a current of 100 amperes. During this process, the carbon 

contained at the negative electrode sublimates because of the high discharge 

temperature. In the laser ablation process, a pulsed laser vaporizes a graphite target in 

a high temperature reactor while an inert gas is bled into the chamber. Nanotubes are 

developed on the cooler surface of the reactor as the vaporized carbon condenses. A 

water-cooled surface may be included in the system to collect the nanotubes. The 

laser ablation method yields around 70% and produces primarily single walled carbon 

nanotubes with a controllable diameter determined by the reaction temperature. 

However, it is more expensive than either arc discharge or chemical vapor deposition. 

CVD synthesis is done by putting a carbon source in the gas phase and using an 

energy source, such as plasma or a resistively heated coil, to transfer energy to a 

gaseous carbon molecule. Commonly used gaseous carbon sources include methane, 

carbon monoxide and acetylene. CVD is the most convenient method, in terms of 

purity as well as commercial production.  

SWNT and MWNT possess a wide range of applications based on the 

remarkably different properties they exhibit. The electron transport in metallic CNT 

occurs without any scattering over long tube lengths which enable them to carry high 

currents [96]. These are known to be the excellent conductors of heat, with thermal 

conductivity more than that of isotropically pure diamond. SWNT are quite stiff, 

exceptionally strong with Young’s modulus 1000GPa and high tensile strength.  A 

single wall nanotube can be up to 100 times stronger than that of steel with the same 

weight. Such high strength emerges from the sp2 bonding of the carbon atoms. A 

reader can refer to number of reviews [95, 97, 98, 99, 100, 101, 102] for the various 

properties and applications of CNT. Although, SWNT are quite expensive to 

synthesize and manufacture in terms of purity, they can easily interact with different 

atoms, molecules and chemicals groups. This property is useful to create a new set of 

nanomaterials with modified properties. The next section deals with such 

functionalization of CNT. 
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1.3.3 Functionalization of carbon nanotubes 

 

One of the various ways to modulate the properties of CNT for the application 

purpose is the ‘functionalization of CNT’. Functionalization is modifying the 

properties of CNT by some external molecular fragments attached either covalently or 

by non-covalent way. It is also possible to insert the atomic species, molecules or 

clusters inside the CNT or wrapping various functional groups around it. Here, we 

shall take the review of some experimental and theoretical work related to different 

types of functionalization and their applications. 

CNT have been functionalized widely for the hydrogen storage purpose. A 

first principal calculation by O. Gülseren and co-workers [103] shows that the 

electronic and atomic structure of carbon nanotubes undergoes dramatic changes with 

hydrogen chemisorptions. It was experimentally demonstrated that the maximum 

degree of hydrogenation of CNT depends on the diameter. CNT with the diameters 

around 2nm yield almost 100% hydrogenation [104]. Calcium decorated nanotubes, 

pure and with defects can also be used for the hydrogen storage [105]. First principal 

calculations by Yildirim and Ciraci report titanium decorated CNT can adsorb upto 

8% hydrogen [106]. The study was generalized further to investigate hydrogen 

storage by light transition metals [107]. CNT are also doped with light metals in the 

interior channel which enhances the binding strength of atomic hydrogen [108]. The 

hydrogenated nanotubes are found to be stable upto 400 °C [109].  

Apart from the hydrogen storage CNT are also experimented and used for 

various other purposes. The tetra and hexa vacancies in metallic CNT trigger the 

transport properties [110]. Liang et.al. [111] dissolved SWNT, lithium and alkyl 

halides in liquid ammonia, yielding sidewall functionalized nanotubes. A recent 

interesting work by J. Guo demonstrates the sulfur impregnated disordered carbon 

nanotubes synthesized as cathode material in lithium-sulphur battery [112]. CNT 

based electrodes are possible due to their high surface to mass ratio and good 

conductivity. Few other research works also bring up the use of CNT as electrodes for 

lithium ion batteries [113, 114]. Lately the noncovalent interaction between the CNT 

and the biomolecules, like DNA, has been the subject of immense interest. There are 

reports [115, 116, 117] in which the DNA assisted dispersion and separation of 
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carbon nanotubes is studied. The DNA can bind the π stacking of CNT resulting in 

helical wrapping of CNT as shown in figure 1.12.     

 

 

 

Figure 1.12 – DNA wrapped CNT (Image courtesy - A. Jagota) 
 

A work by Y. Liu and co-workers demonstrates that CNT coated with alginic acid 

functionalization can overcome the solubility issue of the tubes [118]. Aromatic 

organic molecules and conjugated polymers can interact with the surface of CNT to 

give low contact resistance when CNT are used as the electrodes in organic field 

effect transistors [119]. The development of glucose biosensors based on carbon 

nanotube-nanoelectrode ensembles for the selective detection of glucose has been 

studied [120]. Many studies are dedicated to use of CNT in electronics. These have 

potential applications in nanoscale transistors and sensors. SWNT are used in the 

development of the first intermolecular field effect transistors (FET) [121, 122] and 

first nanotube based logic gates using [123]. 

The unique tubular morphology of nanotube provides a well defined, hollow 

space for inserting the atoms and molecules inside it. Due to the confinement, the size 

of the particles inserted is restricted to nanometer scale. There is also a possibility to 

develop the bonding interactions between carbon atoms and guest atoms. Among a 

variety of materials used to fill inside CNT, fullerenes [124, 125], linear chains, 

liquids and biomolecules are of prominent interest. Encapsulation of CNT with 

various atomic species has been vastly studied [126, 127, 128, 129, 130, 131]. The 

encapsulation of Fe4 cluster in CNT shows a change in geometry from D2d to a low-

symmetry tetrahedral or a planar chain structure depending on the diameter of CNT. 

The strong Fe-C sp hybridization suppresses the sp spin polarization of Fe atoms 

[132]. The structure and electronic structure of Fe3C in SWNT has been indicated to 
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be useful in spintronics studies [133]. The reactivity of CNT has been studied by 

lithium doping [134]. Lithium has been an active reagent to improve the solubility and 

reactivity of nanotubes. The other ingredient which is extensively used for endohedral 

functionalization is water [135, 136]. The formation of ordered polygonal ‘ice-

nanotubes are predicted my MD simulations [137]. An interesting MD study by G. 

Zhuo et. al. shows the confined water chains inside carbon nanotubes can self adjust 

into regular oscillations with lower entropy [138] . 

Substantial amount of work has been done experimentally as well as 

theoretically on the encapsulation of carbon species. In an experiment with the C60 

molecule inside the nanotube [139], it was found that iodine atoms can be doped at 

the intratubular positions in the C60 peapods and when the system is heated to 550 ◦C 

the C60 are transformed into a tubular structure. The stability of number of carbon 

structures such as carbon chains, rings, graphitic sheets and cages inside CNT has 

been studied using DFT calculations by Y. Lui and co-workers [140]. Their work 

showed that CNT with diameters larger than 1.0 nm can incorporate rings, graphitic 

sheets, smaller nanotubes, or cages. Species with dangling bonds can interact with the 

CNT wall or form other stable structures, depending on the distance from the CNT 

wall. The MWNT also have been experimentally used to stabilize the long wires of 

carbons [141]. The encapsulation of carbon species in SWNT and MWNT has been 

reported with various techniques [142, 143, 144, 145, 146]. To summarize, nanotubes 

can be very useful to examine the confinement effects as well as to form the stabile 

nanostructures which are otherwise difficult in free space. For detail reviews the 

reader is advised to go through the articles related to CNT [147, 148, 149, 150, 151, 

152]. The focus of our work is to monitor the effect of confinement on the geometry 

of GNR through encapsulation by CNT.  

After nanoribbons the next fascinating problem we will investigate is 

‘thermodynamics of clusters’. 

 

1.4 THERMODYNAMICS OF SMALL CLUSTERS 

Atomic clusters are considered as the building blocks of nanomaterials. As a thumb 

rule, any system with 3 to 1023 atoms is considered as a ‘cluster’. These form a special 

class of materials in which the limited size leads to unusual combinations of physical 

and chemical properties. These are the prototypes for understanding the nanosystems. 
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Clusters have been extensively studied for last thirty years for analyzing the ground 

state geometry, binding energy, HOMO-LUMO gaps, magnetism, thermal properties 

etc. A great deal of work has been reported on homogeneous clusters to understand 

the ground state properties. Lately, few experimental works on the impurity doped 

clusters seek the attention of the researchers. Apart from the ground state properties, 

the finite temperature properties of clusters are equally fascinating. In this section, we 

give a brief review of the properties of clusters, followed by the reviews on 

thermodynamics of pure and doped clusters. For the sake of completeness we shall 

briefly describe the experimental methods for melting of small clusters towards the 

end.  

 

1.4.1 Introduction to clusters 

 

One of the most significant findings about the clusters is the existence of the ‘magic 

numbered clusters’. These were first reported experimentally by Knight [153] for 

sodium clusters. It was found that the clusters with the number of valence electrons 8, 

20, 40, 58,…. are abundant and stable and were called as magic clusters. Later, such 

stability was also reported for aluminum clusters [154, 155]. The abundance and 

stability of these magic clusters is well explained by electronic shell closing under 

jellium model, which is still used in understanding the metallic clusters.  However for 

more detail understanding, sophisticated techniques such as density functional theory 

are used. In the spherical jellium model we assume that electrons move in a uniform 

background of positive charge, where they are subjected to an external potential. The 

solution of the single electron Schrödinger equation for the spherical well gives a 

series of magic numbers: 2, 8, 18, 20, 34, 40, 58,,….. and leads to 1s, 1p, 1d, 2s… 

electronic shells similar to the shell model of nuclei. (figure 1.13) Such clusters 

particularly can be used as building blocks to generate the cluster assembled materials 

as suggested by Khanna and Jena [11]. 
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Figure 1.13 – A comparative picture of the shell closure in an atom and a cluster. 
[156] 
 

Often the clusters are categorized on the basis of nature of bonding. It is also noted 

that the geometries of the clusters depend on the bonding type. For example, clusters 

of free electron metals and alkali metals like Na normally adopt an electronic shell 

structure [157]. Approximation such as the jellium model describes large number of 

alkali metal properties quite well. Typically, simple metallic clusters possess s-p type 

of bonding orbitals while transition metals like Au, Ag have d-electrons participating 

in the bonding. On the other hand clusters of group IV show prolate shapes in the 

evolution due to the covalent bonding. Structural transition towards prolate shapes has 

been demonstrated experimentally in small clusters of Si [158, 159], Ge [160] and Sn 

[161]. The clusters of gas molecules like argon and neon are bonded by Van-der-

Walls forces. Oxides clusters such as MgO belong to class of ionic clusters and are 

held together by strong forces of attraction between oppositely charged ions. Carbon 

shows surprisingly different geometries and shapes ranging from 0D clusters, linear 

chains, polycyclic rings and 3D graphite. The discovery of stable caged fullerene C60 

by Kroto et.al. [162] is one of the important discoveries in the cluster physics. 

The properties of clusters are different from their bulk not only in terms of 

geometry but in many aspects. For example, bulk sodium is bcc while small clusters 

of sodium in range of few 100 atoms show ample variation in the geometry, Na55 
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being the icosahedral structure. The photoelectron spectroscopy of size-selected 

aluminum (neutral and negative) clusters with size range 1 to 162 confirms the shell 

closing property [163].  Another notable example is of gold clusters which are quite 

reactive compared to the noble gold in bulk. They show a transition from 2D to 3D at 

n=7 [164, 165, 166]. There are reports on the magnetic clusters such as that of Rd and 

Pa [167]. Magnetism in clusters itself is very interesting subject. Advances in the 

experimental techniques as well as tremendous growth in the computational power 

made it feasible to study the clusters from magic numbered to superatoms with great 

details. The properties of clusters are well discussed in many useful reviews and 

books as well as large number of research papers [4, 6, 9, 168, 169]. 

 

1.4.2 Thermodynamics  

 

There are large number of reports focusing on the ground state properties of various 

types of clusters but the ‘thermodynamics’ is still much less probed. Unlike bulk, in 

case of clusters, the specific heat curves are typically broad and range over few 

degrees of temperature. The small clusters co-exist in solid-liquid phase within this 

temperature range. Many times they show premelting features like a small peak or a 

shoulder in addition to the main peak. These premelting features are due to different 

processes such as isomerization or surface melting. The finite temperature properties 

of clusters are well discussed in number of review articles [156, 170, 171, 172, 173] 

and papers [174, 175]. 

There are some notable findings, few from our own group, which bring out 

many interesting aspects of the ‘melting’ behavior in clusters. Based on these earlier 

reports, it is known that the shape of the heat capacity curve depends on number of 

factors such as the size, ground state geometry, symmetry, defects or impurity in the 

clusters. Still, the existing data is insufficient to predict the melting behavior of the 

given system. 

Normally, most of the clusters show the depression in the melting temperature 

compared to the bulk. This is caused by the fact that the fraction of surface atoms is 

large in the cluster. Surface atoms have fewer neighbors; therefore, they are loosely 

bound and their thermal motion is less restricted than in bulk matter. However an 

interesting experimental observation for the gallium clusters namely, ‘higher than 
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bulk melting’ was noted by Jarrold’s group [176]. The gallium clusters of size 17, 39 

and 40 atoms show melting temperature well above the bulk gallium (303 K). The 

experimental work by the same group brought out the extreme size sensitivity in the 

nature of the heat capacity for gallium clusters in the size range of 30–55 atoms [177] 

which was confirmed by DFT calculations by S. Chacko et.al. [178] .This behavior 

was attributed to the covalent bonding in contrast to covalent-metallic bonding in 

bulk. The Sn clusters in range of 10 to 30 atoms were also found to remain stable at 

temperatures higher than bulk melting [179]. This was explained by the covalent 

bonding and very stable tricapped trigonal prism unit of Sn10 within a DFT work by 

Joshi et al. [180]. In series of experimental and simulated work by Haberland and co-

workers the size sensitive melting in case of the sodium clusters in size 55 to 300 is 

rigorously studied [175, 181, 182, 183, 184, 185]. Such irregular variation observed in 

these clusters was a puzzle and many attempts were made to understand this on basis 

of ab-initio simulations. Few DFT calculations from our own group on the sodium 

clusters [186, 187] reveal number of interesting features. The clusters in size range of 

8-55 show irregular melting temperatures. Na58 being a closed shell shows the highest 

melting temperature. These results also reveal that there is a strong correlation 

between the ground state geometry and the finite temperature behavior of the cluster. 

The ground state geometry plays a significant role in determining the shape of the 

specific heat curve. The ordered ground state yields a higher melting temperature. 

These findings have been confirmed by various other groups also [188, 189]. The 

experimentally observed heat capacities for Na55, Na92 and Na142 clusters (by 

Haberland group) [181] are understood with DFT calculations by S. Chacko et.al. 

[190]. Their results reveal the interplay between geometric electronic shell effects. A 

similar size sensitive feature is detected in the experimental work by Breaux et.al. 

[191] on aluminum clusters. Their results are shown in figure 1.14. The figure clearly 

brings out the size sensitive nature where an addition of a single atom significantly 

changes the melting temperature as well as the nature of the heat capacity curve. The 

few MD simulations from our group [192, 193] involve thermodynamics of Ga+
17 

Ga+
19 and Ga30 and Ga31 clusters. The melting behavior for Ga30 and Ga31 is shown in 

figure 1.15 where the addition of single gallium atom in Ga30, changes the specific 

heat curve dramatically. To conclude, clusters show ample variation in the specific 

heat curves which is dependent on any factors. 
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Figure 1.14 - Heat capacity curves for Al+n (n= 49 to 62) clusters [191]. The points are 
the experimental measurements, and the dashed lines are calculated heat capacities 
derived using a modified Debye.  
 

  
 

Figure 1.15 - The Ga30 and Ga31 clusters - geometry and heat capacity curves [193]. 
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In last few years, the atomic gold shows structural dependence on the number 

of atoms. The geometry and binding energies of small gold clusters have been studied 

by number of groups [194, 195, 196, 197]. 20 atom cluster of gold possesses an 

ordered tetrahedral geometry and high stability amongst the other small gold clusters 

[198]. S. Krishnamurty and co-workers demonstrated that this Au20 shows a sharp 

melting peak while a removal of one vertex atom causes Au19 cluster to melt over a 

broad range of temperature [199].  The first hollow golden cages for Aun
- (n=16 to 18) 

were detected experimentally and theoretically by S. Busula et.al. [166]. Further a 

DFT work for 15 to 19 atoms gold clusters by the same author reports a transition 

from flat to hollow cages occurring at Au17. The gold cages have been observed even 

for n=72, termed as gold fullerene [200]. Such cages have potential applications in 

encapsulating an atom, molecule and are known to be used in the ‘targeted drug 

delivery’. In a joint experimental-theoretical study by Wang’s group the gold cages 

are doped with group IV atoms with dopants Si, Ge, Sn [201]. It was shown that the 

nature of the local interactions between Au and dopant atom is a critical factor in 

determining whether an impurity atom can be used to dope inside the golden cages. 

The hollow and space filling medium sized Au clusters are analyzed by Jellinek’s 

group [202]. A hollow cage configuration of Au50 is more stable than its alternative 

space-filling isomeric forms.  

To the best of our knowledge, the stability of these cages at high temperature 

is not explored. In the present work, we have carried out the thermodynamics for the 

smallest gold cages, Au16 and Au17 cages along with the isomer distribution analysis.  

At the end of this section we would like to note few important terminologies 

about the ‘phase change’ in clusters. Normally, the melting in bulk is characterized by 

a sharp peak in specific heat curve. In finite sized systems, it is well known that there 

is no definite phase transition. We will continue to use the terminology ‘melting’ in a 

broad sense and it indicates the phase change from solid-like to liquid-like.  

 

1.4.3 Effect of doping  

 

Doping in the bulk is a common practice used to modify the relevant property. 

Commonly used steel is obtained by doping iron with appropriate amount of carbon. 

Bronze is another alloy which is formed by doping copper with tin or zinc. In case of 
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clusters also, the addition of impurity atom or atoms sometimes change the melting 

behavior significantly. The properties of the doped clusters are dependent on 

electronegativity, nature of bonding, ionic radii and many other factors. There is 

indeed extensive work on different clusters doped with various impurities exploring 

geometry, bonding and finite temperature properties [203, 204, 205, 206, 207, 208, 

209, 210, 211]. A DFT calculation by Lee et.al demonstrated that Li10 when doped 

with two aluminum atoms results in a substantial structural change, triggers surface 

melting while the addition of one aluminum impurity causes a rearrangement of atoms 

[212]. Li7 doped with single Si impurity are studied by Joshi and Kanhere [213]. Their 

results show that the doped cluster melts earlier than the host lithium cluster. The 

same group has also studied LinSn, (1<n<9) clusters and their results bring out the 

change in the nature of bonding from ionic to delocalized metallic like, after n=6 

[214]. It is shown that the Ti impurity suppresses the fragmentation of Si16 cluster and 

melts at higher temperature [215]. The magnetic properties in transition-metal-doped 

gold clusters are studied by X.Li. et.al. using photoelectron spectroscopy and DFT 

[216]. The caged cluster of Au16 is doped with Ag, Zn and In to show that electronic 

properties of golden buckyballs can be tuned by doping [217]. In another work, Au16 

is doped with Fe, Co and Ni and the 4s electrons are observed to transfer to Au16 cage, 

whereas atomic-like magnetism due to the unpaired 3d electrons is retained for all the 

doped clusters [218]. A recent result on titanium doped nickel clusters TiNin (n=1−12) 

[219] show that Ti brings substantial structural reconstruction from 3D to layer one. 

There are few more reports on gold clusters doped with different impurities [220, 221, 

222]. 

The 13 atom aluminum cluster which is one electron short for the shell closure 

when doped with different tetravalent impurities leads to significant changes in BE, 

geometry, bonding and stability [223, 224, 225 226]. It is found that the most stable 

dopant turns out to be carbon atom. The carbon occupies the central position in an 

icosahedral geometry of Al13. Ab-initio simulations by A. Seitsonen [227] report the 

finite temperature studies on Al12C but using only single temperature. Moreover, Al13 

and Ga13 both are isoelectronic, that is having same number of valence electrons, but 

different ground state geometries. After substituting with a single carbon, both the 

doped systems become 40 atom closed shell with enhanced stability. Therefore there 

were few unresolved issues at time of beginning of this work such as the effect of 
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carbon doping on the melting of both these clusters in terms of the change in Cv, 

bonding and geometry. In order to resolve these issues we have carried out extensive 

ab-initio thermodynamics of the pure and carbon doped Aal13 and Ga13 clusters.  

It is gratifying that activities in clusters physics are still being carried out for 

probing variety of different properties. The experimental melting transition of finite 

two-dimensional dust clusters in dusty plasma is analyzed using the method of 

instantaneous normal modes [228]. The full vibrational spectrum of Nin and Cun 

clusters with n from 2 to 150 has been determined. The obtained heat capacity shows 

clear cluster-size effects [229]. In a theoretical investigation using global optimization 

and path-integral simulation, melting and freezing of fullerene doped helium clusters 

is investigated. Up to 32 atoms, the fullerene ion traps the helium atoms on the faces 

above which the geometric frustration takes over and the clusters grow as a thin but 

homogeneous liquid layer. As their size reaches 60 atoms, corrugation barriers are 

suppressed and the cluster is again rigid like [230]. The structure and stability of Aun 

clusters (where n = 1, 5, 6, 19 and 39) supported on the perfect and defective 

graphene sheets were investigated using a periodic DFT model by Paulo et.al. [231]. 

They observed stronger interaction between a gold atom and the graphene sheet with 

a defective structure. In another DFT work the equilibrium geometries, stabilities and 

electronic properties of the bimetallic M2-doped Aun (M = Ag, Cu; n = 1−10) clusters 

are studied using effective core potentials [232]. Gao et.al. performed comprehensive 

ab-initio study of catalytic activities on sub nanometer gold clusters particularly in the 

size range of 16 to 35 using CO oxidation as a chemical probe [233]. Their 

calculations support the notion that CO and O2 adsorption energies on the gold 

clusters can be an effective indicator to assess catalytic activities of sub nanometer 

gold clusters. 

 

1.4.4 Experimental Methods  

 

The early work in the finite temperature of clusters was initiated by the experiments. 

With the development in the computer technology, it was possible to simulate the 

problems thereby reducing the time and efforts. The primary motivation of the 

simulations comes from the fact that they have predictive power. Also, one can 

directly compare the results of the simulations with the experimental data. Here we 
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briefly go through important experimental methods used in calculating the melting of 

clusters. Most of the methods are based on measuring the heat capacity as a function 

of temperature. 

The overall procedure follows the generation of size-selective clusters, which 

is done by mass spectrometer. The cluster ions are thermalized by passing them 

through a temperature regulated region containing a buffer gas. Collisions with the 

buffer gas bring the clusters to the temperature of the walls. Once thermalized, they 

are in a canonical ensemble. They are then removed to a high vacuum environment, 

where they are mass selected and then probed to determine their internal energy 

content. 

In the method by Haberland and collaborators, [175, 181] the mass selected 

cluster ions at temperature T1 are irradiated with photon of energy hν. They undergo 

multiphoton absorption, and subsequently dissociate. This approach has been applied 

mainly to study sodium clusters. The dissociation energies of the sodium clusters are 

around 1 eV, three to four times smaller than the photon energy. In the multiphoton 

absorption step, enough energy is absorbed to reach the dissociation threshold, and 

then every additional photon leads to the loss of an extra three to four sodium atoms. 

Thus the fragmented ion mass spectrum shows oscillations with peaks separated by 

three to four atoms. If more energy is added to the dissociating clusters, either by 

raising their initial temperature or by changing the photon energy, the peaks in the 

fragmented mass spectrum shift toward smaller product ions. The heat capacity is 

deduced by tracking the shift in the fragmented mass spectrum as the initial 

temperature is changed. A drawback of this approach is that the photon energy needs 

to be much larger than the cluster dissociation energy (which so far has limited this 

method to weakly bound clusters).  

The method of Jarrold and collaborators [176, 234] uses multicollision 

induced dissociation. The method is carried out as follows: The clusters are 

dissociated by shooting them into a high pressure helium buffer gas where they are 

heated by collisions until their kinetic energy is thermalized. The fraction of the ions’ 

initial kinetic energy that is converted into internal energy is small. By using mass 

spectrometry, it is possible to determine the number of atoms present in the cluster 

and ensure that the cluster is not contaminated. The cluster ions are size selected with 

the spectrometer and then focused into the collision cell which contains helium buffer 
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gas at a pressure 1.00 Torr. As the ions enter the cell they undergo numerous 

collisions with the helium buffer gas, and may be heated to the point where they 

dissociate. Undissociated ions and fragment ions travel across the collision cell under 

the influence of a weak electric field and then exit through a small aperture. They are 

subsequently focused into another spectrometer where they are mass analyzed and 

then detected. Ion mobility measurement [235] is another technique in which the 

rapidly traveling ions through an inert buffer gas under the influence of a weak 

electric field, provides a measure of the average collision cross section of the ion. The 

collision cross section is geometry dependant so the change in the geometry of the 

clusters which occurs due to phase transition is detected.  

 

1.5  ORGANIZATION OF THESIS  

The chapters in the thesis are organized as follows.  

 

Chapter 2:  In this chapter we describe the theoretical and computational techniques 

that are used in the thesis. The chapter begins with the concepts of many body theory 

and some early techniques to solve it. Next, we discuss the Density Functional Theory 

(DFT) followed by pseudopotential formalism with plane wave basis set. The 

Molecular Dynamics (MD) technique to extract the ionic trajectories is discussed 

thereafter. At the end along with the data analysis tools, we also give the description 

of the traditional ‘melting’ indicators. We close the chapter with the error analysis. 

 

Chapter 3: After discussing the basic computational methods, we move on to the first 

problem of thermodynamics of Al13 and Ga13 clusters doped with carbon. The chapter 

begins with the important reports on the doped clusters and the effect of impurity on 

the melting temperature. Then we present our results of thermodynamic simulations 

for Al13, Ga13, Al12C and Ga12C. We have calculated the heat capacity curves (Cv) for 

all four clusters. Our results state that the doping with single tetrahedral carbon 

impurity brings out significant changes in the melting temperature of the host clusters. 

Both the doped clusters show reduction in the melting by about 400-500K. This can 

be explained on account of the charge transfer from the surface atoms towards the 

central carbon atom in both the clusters. This weakens the surface bonds and clusters 

melt earlier. In case of gallium, Ga13 changes from decahedra to perfect icosahedra on 
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doping. This change in the geometry is responsible to the sharp peak in heat capacity 

curve in case of Ga12C as compared to Ga13. 

 

Chapter 4: In this chapter we have studied the stability of the smallest gold cages 

namely Au16 and Au17 at finite temperature. We present few known results on gold 

clusters addressing the geometry, transition from planer to 3D and its application as 

catalysis. Next, via ab-initio simulations, we have obtained the ground state along 

with almost 50 distinct isomers for each cluster. This is followed by the finite 

temperature study of these clusters. It is observed that the cages are stable at least up 

to 850 K. Although both clusters melt around the same temperature, i.e. around 900 

K, Au17 shows a peak in the heat capacity curve in contrast to the broad peak seen for 

Au16. The small peak in Au17 is well discussed by the isomer energy analysis. 

 

Chapter 5: A well known two dimensional material ‘graphene’ has become the focus 

of current research. This one atom thick, sp2 bonded sheet of carbon atoms is a zero 

gap semimetal. On the other hand, a fully hydrogenated graphene termed as graphane 

shows a band gap of 3.5 eV by DFT calculations. We have probed this metal insulator 

transition via successive hydrogenation for 18 systems, right from 0%H to 100%H. 

The effect of hydrogenation has been explored by many authors but with small 

hydrogen percentage. After reviewing the relevant work, we move to present our 

extensive DFT calculations. First, our results show that the hydrogens prefer to 

decorate graphene in form of a compact, single island which is energetically favored. 

This is inferred by carrying out 7-8 various configurations for few hydrogenated 

systems. Next, the analysis of density of states and charge density for each of the 18 

systems under consideration bring our surprisingly novel features. As hydrogen 

coverage increases, the semi-metal turns into a metal, showing a delocalized charge 

density and then transforms into an insulator. The metallic phase is spatially 

inhomogeneous in the sense it contains islands of insulating regions formed by 

hydrogenated carbon atoms and metallic channels formed by contiguous bare carbon 

atoms. It turns out that it is possible to pattern the graphene sheet to tune the 

electronic structure. For example, removal of hydrogen atoms along the diagonal of 

the unit cell, yielding an armchair pattern at the edge, gives rise to a bandgap of 1.4 

eV. 
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Chapter 6: The electronic structure of pure and hydrogenated graphene nanoribbons 

(GNR) encapsulated in carbon nanotube (CNT) is explored within DFT framework. 

We have encapsulated the smallest, one atom wide GNR inside CNT of different 

diameters. The effect of CNT confinement as well as the hydrogenation on GNR 

structure is studied. Our results show that the pure GNR are sensitive to diameter and 

undergo structural changes as the diameter is changed. The geometries are sensitive to 

the placement and concentration of hydrogen with respect to the change in the 

diameter. For systematically placed 50% hydrogenated GNR, there is no change in the 

geometry while random placement of hydrogens on GNR turns out to be diameter 

sensitive. Remarkably, the geometries of the fully hydrogenated ribbon turn out to be 

insensitive to the diameter, the final structure being two separated linear chains. Both 

these chains show delocalized charge density on the Fermi level. 
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2. Theoretical Framework  

 

In this chapter, we will discuss the basic theoretical formalism, different aspects of its 

implementation and the other tools used throughout this thesis. There are three main 

ingredients; first, numerically tractable and accurate method for ‘many electron 

system’. The problem is addressed via density functional theory (DFT) [236]. This is 

followed by a brief introduction to pseudopotentials and plane wave method. The 

second ingredient is molecular dynamics (MD), which is a powerful tool for 

calculating thermodynamic quantities. We have used Born Oppenheimer molecular 

dynamics (BOMD) for all the calculations. The specific heat is calculated using 

multiple histogram technique (MH). The third ingredient is the tools to analyze the 

data. We shall review various indicators such as root mean square bond length 

fluctuations (δrms), mean square displacements, radial distribution function etc. to 

analyze the melting while the ground state properties (electronic and structural) are 

studied using density of states, analysis of bonding, charge density isosurfaces, isomer 

energy distribution, band gaps etc. 

We shall begin the question of handling many interacting electron problem. 

 

2.1 EARLIER APPROXIMATIONS  

Most of the physical problems of interest consist of a large number of interacting 

electrons and ions. The total number of ions and electrons is usually so large that an 

exact solution cannot be found. For the past thirty years density functional theory 

(DFT) has been a dominant method for the quantum mechanical simulation. Before 

getting into the details of DFT, it is essential to take the review of some earlier 

approximations used to solve the ‘many body problem’. 
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2.1.1  Many body problem 

 

Consider a system of atoms with N electrons and M ions. The time independent 

Schrödinger equation (SE) for these N interacting electrons in an ionic potential of M 

ions is3 
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(2.1) 

 

Note that [ � [�\\\\�\\\\��]\\\\^_`�`��]`a# is a function of electronic and ionic coordinates. 

Indices A, B run over M nuclei and i, j denote N electrons. ZA, ZB represent the 

charge on ions A and B while R and r are ionic and electronic coordinates. The first 

term denotes the kinetic energy of the electrons, second term is ion-electron 

interaction, the third term indicates the electron-electron interaction and last two terms 

are kinetic energy of ions and ion-ion interaction respectively. Such a complex 

equation is practically impossible to solve for large value of N.  

There are several approximations introduced to solve (2.1). A very common 

and reasonable approximation is Born-Oppenheimer (BO) approximation. Since the 

mass of nuclei is much larger than the mass of the electrons, they move much slower 

than electrons. Thus motion of electrons and ions is decoupled and essentially the 

electronic problem is solved while the coordinates of ions are fixed. So, the motion of 

ions is ignored while calculating electronic wavefunctions and we decouple ionic and 

electronic dynamics. Hence equation (2.1) reduces to  
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3 All the quantities are expressed in atomic units, i.e. ħ= me = e2

 = a0 = 1.  
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Note that only electronic SE is written here. The wavefunction now is a function of 

electronic coordinates only. One of the simplest solutions for (2.2) was proposed by 

Hartree which is discussed below. 

 

2.1.2 Hartree and Hartree-Fock Theory 

 

In Hartree theory, the total wavefunction is written as the product of one-electron 

wavefunction which is given by, 

 [�OK� OC�]]!O8# � �dK�OK
� dC�OC
�] ! ! d8�O8
 (2.3) 

 

where d'�O'
 are one electron wavefunctions. Substituting (2.3) in (2.2) and using 

variational principal, we get Hartree equations, 
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These set of equations (there is one each for each occupied one electron level�d'�O'
 
are solved by self consistent way. The term 
L�k KNO<PNf ��l'm;�is the external 

potential and �n Rop�Op#RqROh<OpR ?rS ��lstsu , the electronic contribution. Each electron 

experiences a field due to all other electrons. If the remaining electrons are treated as 

the smooth distribution of negative charge with density��vS�OS# � � RdS�OS#RC, then the 

potential energy of given electron i would be given by�lstsu��. Effectively, this term is 

the average coulomb potential experienced by ith electron due to N-1 electrons. What 

has been missed out is Pauli’s exclusion principal that is the wavefunction ψ should 

be antisymmetric under the exchange of two electrons. This antisymmetric condition 

is satisfied if  [ is chosen as 
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(2.5) 

Such a determinant formed out of one electron orbitals is called Slater determinant. 

Hartree-Fock (HF) is the method in which the orthogonal orbitals d' �are found 

variationally so as to minimize the total energy. The total energy is given by, 
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 Hi is one electron operator and it describes an electron moving in the field of nucleus. 
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     �''���B?��'S are called as Coulomb and Exchange integrals respectively. Minimization 

of (2.6) with respect to d'� gives Hartree-Fock equations. 
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dh�O�
d��O
�O��O�S ��j' d'�O'
 

 

         

(2.10) 

 

The terms l'm;�O
�����lsts�O
 are same as appeared in Hartree equation. The last 

term is an additional energy term called as exchange term. This term is non-local, 

represents exchange interaction between same spins and operative only when the spin 
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of the electrons in ith and jth orbitals are same. (The spin indices are suppressed here) 

Hartree-Fock equations are also to be solved by self consistent method. 

HF is a mean field theory that generates single particle wavefunctions which 

include the effect of correlations between like-spin electrons. But the correlations 

between anti parallel spins are missed. In HF, only one Slater determinant formed out 

of N lowest single particle wavefunctions is chosen as the basis set. The other 

drawback is, for large systems, it is practically very difficult to solve HF equations 

and adds lot of computational cost.  

There are few methods to solve the many body problem such as configuration 

interactions (CI), GW method based on Green’s function etc. All these methods 

demand high computational power as number of atoms become large. A realistic 

many body calculation using full CI or GW for a hundred or more electrons is 

virtually impossible.  

The density functional theory offers a practical and computationally tractable 

way of computing electronic structure of large systems with high accuracy (at least 

for a class of problems). Since our calculations are based on DFT, we will discuss it in 

details. 

 

2.2  DENSITY FUNCTIONAL FORMALISM  

DFT is a powerful yet simple formalism which has been successfully applied for 

calculating the ground state properties and electronic structure of many systems. The 

key feature of DFT is that it treats the charge density ρ(x,y,z) as the central parameter. 

There is an extensive literature available on the DFT including excellent books by 

Parr and Yang [236], Martin [237] and Kohanhoff [238]. The formalism of DFT is 

based on following two theorems, known as Hohenberg Kohn theorems (HK) [239]. 

 

2.2.1 Hohenberg Kohn theorems and Kohn- Sham formalism 

 

The first Hohenberg Kohn (HK) theorem was proved by Hohenberg and Kohn in 

1964 [239]. It states that ‘The electron charge density ��O
 uniquely determines the 

external potential’. Since the external potential fixes the Hamiltonian, effectively all 

the ground state  properties of many-electron system are determined by the charge 
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density, ρ(r). In other words, the energy is a functional4 of charge density and is 

represented as E[ρ(r)]. We begin by writing down the energy terms  

 *�v�O
� � ��v�O
� � *ss�v�O
� ��*s6��v�O
�� ��}��v�O
� ��*s6��v�O
���� 
 

 

(2.11) �}��v�O
� � ���v�O
� � *ss�v�O
� 
 

 

The term��*s6��v�O
��)] in (2.11) is due to the external potential which is simply ion-

electron interaction and is expressed as  

 

*s6�����
� � �gl'm;�r
� ���
�� (2.12) 

 �}��v�O
� is the contribution from kinetic energy and electron-electron interaction. 

The real complexity in solving (2.11) is �}��v�O
� as its exact form is not known. �}��v�O
� is called as a universal functional as it is independent of the system at 

hand. It applies well to all the systems irrespective of the entities. Thus first theorem 

is an existence theorem. The second HK theorem states that ‘The charge density, 

ρ(r), which minimizes the energy functional E[ρ(r)],  is the exact ground state 

charge density’. This establishes the variational nature of the total energy with respect 

to the charge density. 

However the practical realization of these theorems was provided by Kohn 

and Sham [240]. They provided an approximate method to solve for the unknown 

terms in (2.11). Within KS formalism, the system of N interacting electrons is mapped 

onto a fictitious system of N non-interacting electrons having the same charge density 

and moving in an effective potential. Now the energy functional is rewritten as  

 *�v�O
� � ���v�O
� � *s6��v�O
� � *}�v�O
� � *���v�O
�       (2.13) 

 

Where ���v�O
� is the kinetic energy of non interacting system which produces same 

ground state charge density and is calculated exactly from the one-electron orbitals 

                                                           
4 A functional is a map for going from function to a number. 
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�����\
� � 
��gd'��O
����d'�O
?O 
   (2.14) 

 *s6�����
� is given by (2.12). Next, *}�v�O
� is the Hartree energy which is nothing 

but classical Coulomb interaction between the electrons. 

 

������
� � � ��� �����
����
�� 
 ��N ������ (2.15) 

 

The last term *���v�O
� � � �� 
���
 ���*ss 
�*}
�is called as exchange-correlation 

energy which includes the quantum terms like the difference in kinetic energy of 

interacting and non-interacting system and the difference in actual electron-electron 

interaction and Hartree term. This *���v�O
�� incorporates all the exchange and 

correlation effects. However the exact form of this functional is not known and needs 

approximate methods to calculate it. The commonly used approximations are local 

density approximation (LDA) and generalized gradient approximation (GGA). We 

will discuss these in details little later.  

Next, the minimum of the energy functional (2.13) yields the exact ground 

state charge density. We minimize (2.13) with respect to the density ρ(r), subjected to 

the constraint that total number of electrons must be N. The Lagrange multiplier of 

this constraint is the electronic chemical potential µ. 

 

�����
� 
 � �g���
�� 
 ^� � ������    (2.16) 

 

Using (2.16) and (2.13), the minimization condition gives a set of non linear equations 

known as Kohn-Sham equations and are given as  

 

�
I�� �������O
��d'�O
 ��j' d'�O
   (2.17) 

      

���
 � �g Nd'�O
NC��O 
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The effective potential VKS is the sum of external (ionic) potential, Hartree or 

Columbic potential and exchange correlation potential.  

  ¡¢���
 � � £¤¥��
 �� ���
 �� ¦§��
    (2.18) 

 

VKS is a local potential and is actually a functional of ρ(r) and has the form, 

 

 ¡¢���
 � � £¤¥��
 ��g����
����N� 
 ��N �� � ��¦§����
  

          (2.19) 

 

The equations (2.17) describe the behavior of non-interacting electrons in an effective 

potential VKS(r). Evidently, these equations are coupled. It is very important to realize 

that if the exact forms of �¦§�and ���were known, the Kohn-Sham strategy would 

lead to the exact energy!! 

DFT thus cleverly maps an interacting many body problem to non-interacting 

electrons having same charge density. This allows working with single particle 

equation with an effective potential. The solution to (2.17) gives total energy and 

electronic charge density of the ground state.  All other quantities can be derived from 

these. The KS equations need to be solved self-consistently as the form of ���� and ψ 

are unknown. The starting point for solving the KS equation is the external potential 

and a trial, random wavefunction (and trial charge density of course!). The new set of 

wavefunctions having new charge density is obtained by solving (2.17). This in turn 

yields new effective potential, which is plugged into the equation. The process 

continues till the initial and final charge densities match. Thus within DFT formalism 

the real many body problem which is intractable is reduced to one electron equation in 

an effective potential. The charge density ���
 is a non-negative function of only 

three spatial variables. It vanishes at infinity (for finite sized systems) and integrates 

to the total number of electrons. 

It is worth noting that formally there is no physical interpretation of the single-

particle Kohn-Sham eigenvalues and orbitals; they are merely introduced to facilitate 

the determination of charge density. The exception is the highest occupied state, for 
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which it can be shown that the eigenvalue corresponding to the highest occupied state 

yields the ionization energy of the system (as shown by Janak theorem). 

 

2.2.2 Exchange correlation functionals 

 

It turns out that the accuracy of DFT to predict the properties is crucially dependant 

on the choice of exchange correlation functional. In fact we note that because of use 

of exchange correlation potential, the Kohn-Sham energy is not strictly variational! 

There are now many different flavours of functionals available. The simplest and 

widely used approximation is the local density approximation (LDA) [236, 239, 241]. 

It is based on interacting electron gas model. In LDA, it is assumed that the density 

varies slowly, each small volume looks like a homogeneous and uniform electron gas 

and the exchange correlation functional is constructed as  

 

*��¨©M ��g���
 j¤ª ��
��   (2.20) 

 

Where j¤ª ��
 is the exchange correlation energy per particle of a uniform electron 

gas of density ρ. For practical purposes, *��¨©M is split into exchange and correlation 

separately, *��¨©M �� �*�̈©M ��*�̈©M Out of this the exchange term is known 

analytically from homogeneous electron gas as  

 

*�̈©M ��
�3 ��3�K«>g���
9«>�� 
    (2.21) 

 

The correlations *�̈©M are estimated from detailed many body calculations on 

interacting electron gas such as quantum Monte Carlo methods. 

LDA has been proven to be a good approximation for estimating properties 

like structure, vibrational frequencies, elastic modulus and phase stability. It is often 

surprisingly accurate and for systems with slowly varying charge densities it generally 

gives good results. However it overestimates the binding energies. In weakly bound 

systems these errors are exaggerated and bond lengths are too short. LDA is not 

suitable for highly non-homogenous systems where the charge density varies rapidly. 
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It also fails to describe the strongly correlated systems. In addition, Van der Waals 

bonding and hydrogen bodings are very poorly described by LDA.  

The failures of LDA are well recognized and there have been many sustained 

efforts to improve upon the functional. GGA, generalized gradient approximation 

[242] is used for the systems having non-homogeneous charge density. GGA takes 

into account the gradient of the charge density at a particular location. 

                                                                                                                                                                                                               

*��¬¬M ��g���
� j ����
� ����
#��    (2.22) 

 

In most of our work we have used a well established form of GGA that is PBE [262]. 

Recently, a class of functionals have been introduced which are a step ahead of GGA. 

These are called as Hybrid functional. These include a fraction of exact Hartree Fock 

exchange energy calculated as a functional of the Kohn-Sham molecular orbitals. 

These appear to be promising ones. However it is still not possible to use ‘standard’ 

exchange correlations functional for all systems which will predict many properties 

with uniform and acceptable accuracy. 

 

2.2.3 Solving Kohn-Sham equations 

 

Now we turn towards the implementation of KS theory. Even if the formal KS 

solution still has to be solved for variety of systems, such as atoms, molecules, 

surfaces, they pose different boundary conditions; therefore accurate numerical 

solution is still a problem. Fortunately, during the last many years, a number of 

techniques have been developed for the practical implementation of KS. Depending 

on the nature of the problem, number of methods has been successfully implemented. 

One of the methods is to expand each of the Kohn-Sham orbitals in a suitable basis, 

converting the real space equation into a matrix equation. Typically all orbitals are 

expanded in terms of a suitable basis, that is d'�O
 � �k ­S �®S�O
S̄J° , ®S�O
 being set 

of basis functions. The commonly used basis functions are plane waves, ion centered 

Gaussians, atomic orbitals etc. and the choice of basis set is indeed very much system 

dependant. We have used plane wave (PW) basis set for all the calculations as 

implemented in VASP code [261]. 
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Plane wave method  

The advantages of plane wave (PW) are ample. It is the simplest one to represent the 

electron wavefunctions. It is complete and has inbuilt periodicity. Here we briefly 

present PW implementation within KS. 

According to the Bloch’s theorem, in a periodic system, a wavefunction can be 

written as  

 d'�O
 � � ±'�,!O²³�O
        (2.23) 

 

Where ²³�O
 is periodic.  

²³�O
 � ��­¬±'´!O¬         (2.24) 

 

Here G are the lattice vectors in reciprocal space. Thus the electronic wavefunction d'�O
 is written as linear combination of plane waves  

 

d'�O
 � ��­,�´�±'�,µ¬
!O¬          (2.25) 

 

In principal, infinite number of plane waves are required to expand the wavefunction. 

However, in practice, the plane waves with kinetic energy less than certain cut off 

energy are used.  

 ��� �1 � ¶
C · *u¸�            (2.26) 

 

Apart from this, PW are site independent and hence free of superposition errors. They 

are computationally simple to operate and are controlled by single parameter that is 

cut-off energy. One of most important features of PW is that these are not dependant 

on the ionic positions. Hence the forces on the ions are easy to calculate by 

straightforward application of Hellmann Feynman theorem. Pulley forces are not 

required 
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The plane wave method is useful for the periodic systems, but for the systems 

like clusters, the calculations are performed within a large simulation box which is 

repeated periodically. The size of the box is so chosen that the interaction between 

clusters in neighboring boxes is negligible. This strategy allows the use of plane 

waves as the basis set. The wavefunctions vanish at the boundary of the box. The 

convergence of the results can be increased by increasing number of plane waves.  

 

2.3  PSEUDOPOTENTIALS  

For computationally tractable solution, we like to keep the number of plane waves 

minimal without losing the accuracy. However all electron calculations include core 

and valence electrons and it would still be expensive to use plane waves. This is 

because the tightly bound core orbitals demand high value of energy cut-off and 

effectively large number of plane waves to describe them. Quite clearly, most of 

physical properties are determined by the valence electrons while core wavefunctions 

by and large do not change from their atomic values. In the pseudopotential approach, 

only valence electrons are considered and the strong ionic potential due to core is 

replaced by replaced by a nodeless pseudopotential such that it is identical to the all 

electron (AE) potential beyond a certain cut-off radius (rc). Within the core region, the 

pseudo wavefunction is constructed so as to remove all the nodes. In other words, the 

valence wavefunction must be identical to AE wavefunction beyond the cut off. This 

gives a lot of freedom of choosing the nature of valence wavefunction inside core 

region. This freedom is exploited for the construction of smooth potential as feasible. 

The obvious requirement is it should be nodeless inside.  

This effectively reduces the computational cost thereby reducing the number 

of plane waves. The concept is pictorially demonstrated in figure 2.1    
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Figure 2.1 - The all electron wavefunction and potential (blue color) and pseudo 
wavefunctions and potential (red color). All the quantities are shown as a function of 
distance r from the atomic nucleus.  
 

The usual method of pseudopotential generation is to determine the all electron 

eigenfunctions of an isolated atom using the KS equation within DFT with same 

exchange correlation potential. 

 

�
I�� �������O
��d'M¹ ��j' d'M¹ 
    

(2.27) 

 

Where dM¹  is the wavefunction for the all electron (AE) atomic system with angular 

momentum component l. This is replaced by a smooth and nodeless pseudo 

wavefunctions dº� within the cut-off radius obeying certain criteria that are noted 

below. The pseudopotential is then constructed by directly inverting the Kohn-Sham 

equation with the pseudo wavefunction�dº�. A cut off radius is so chosen that the 

outside wavefunction can be smoothly extrapolated inside by number of ways.  

Although various techniques are well established to construct PP, a good PP 

should obey certain criteria which are given below -  

1. Real and pseudo valence eigenvalues are same. εal = εps 

Ψ
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2. Norm conservation –  

 

g Rd'M¹�O
RC?O ��»u
° g Rd'¼��O
RC?O�»u

°  
      (2.28) 

 

3. Transferability - The pseudopotential when transferred to a different 

environment should retain the same energy variation up to the first order as 

that of the all-electron (AE) potential. This property is called as transferability. 

4. Pseudo wavefunctions should be identical to all electron wave function outside 

the cut-off radius. The logarithmic derivatives of real and pseudo wave 

function and their first energy derivative agree beyond cut-off. 

The first non empirical PP was constructed by Phillips and Kleinman [243] but the 

above conditions were not satisfied by these PP. The norm conservation and 

transferability conditions were satisfied by the pseudopotentials proposed by Hamann, 

Schlüler and Chiang [244] .The norm conserving PP are extremely expensive to apply 

for 3d transition metal atoms due to the requirement of large number of plane waves 

to represent the core states. They can be made softer by increasing the cut-off radius 

but there is an upper bound beyond which if the radius is increased, the transferability 

is affected. A solution to this problem was proposed by Vanderbilt who showed that it 

is possible to release the norm–conservation criteria, if one corrects for the resulting 

difference between the exact and the pseudo charge density using localized 

augmentation functions centered on each atom. Such PP are known as Vanderbilt’s 

ultrasoft pseudopotentials (USPP) [245]. Many modern pseudopotential calculations 

use ultrasoft PP generated by Vanderbilt. As the name suggests these have much 

softer pseudo potentials and require considerably lesser number of plane waves. We 

have used USPP in two problems based on the thermodynamics of clusters. For more 

understanding on PP the reader can refer the books [246].  For the practical purpose, 

we use a separable form of PP given by Bylander and Kleinman [247].  

Although the PP treatment has successfully worked for last many years, it still 

misses the effect of core states which could affect number of properties; therefore a 

method known as projected augmented wave method (PAW) was formulated to 

incorporate the effect of core. PAW method is used very often in ab-initio 

calculations due to its advantages over PP.  
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PAW 

PAW bridges the pseudopotential approach with all electron method. PAW is 

developed by Blöchl [248] who proposed to reconstruct all-electron wavefunctions 

from the pseudo wavefunctions. The PAW method works directly with the full AE 

wave functions and AE potentials. In PAW approach, the space is divided into atom 

centered augmentation spheres inside which the wavefunctions are taken as atom like 

while outside the sphere, some envelope functions are defined. The central idea is as 

follows : In the core region the electronic wavefunction could be described more 

efficiently by  atomic-like wavefunctions  while in the region far away from nuclei, 

the electrons are more like ‘free’ and can be described by plane waves. At the 

boundaries, both the functions are matched. The PAW method is a linear 

transformation between smooth valence (and semi-core) pseudo (PS) wavefunctions, d½;and all electron (AE) wavefunctions�d;. The core states of the atoms �®' are fixed 

to the reference shape for the isolated atom. We follow Blöchl’s work and the 

mathematical formalism given by him:  

Define a linear transformation operator �¾  which transforms an auxiliary (pseudo) 

smooth wave function d½;��
 to the true all electron wave function��d;��
� n is the 

label for one particle state  

 d;��
 � ��¾d½;��
    (2.29) 

 

Express the total energy by auxiliary wavefunctions 

 * � *�d;�O
� � *¿�¾d½;��
�À    (2.30) 

 

Variational principal with respect to auxiliary wavefunctions yields 

 ����� 
����Á;
d½;��
 � �   (2.31) 

 

Instead of normal KS, these are to be solved, but now the Hamilton operator has a 

different form, ���� , an overlap operator ���  occurs and the resulting auxiliary 

wave functions are smooth. When we evaluate physical quantities we need to evaluate 

expectation values of an operator A, 
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%Â& � ��%d;�NÂNd;�&; ���%d½;N��Â�Nd½;&;    (2.32) 

 

The transformation operator T is defined as 

 

��Ã � � ���ÄN®'& 
� ÄN®½'&#%ÅÆ' Ä'   (2.33) 

NÄ®'& are all electron atomic orbitals. These are construed from real atomic potentials. ÄN®½'& pseudo atomic orbital. These are constructed from pseudopotentials. ÄNÅÆ'&  is projector function 

The operator transforms pseudo wavefunctions to all electron wavefunction. 

 ÄNd;& � � ÄNd½;& ����ÄN®'& 
� ÄN®½'&#' �%ÅÆ'Nd½;& (2.34) 

 

These projector functions are localized inside the augmented spheres that is ÅÆ'�O
 ��� O Ç È@. Also the all electron orbitals and pseudo orbitals are same outside the 

augmented spheres.�®'�O
 � �®½'�r
 � O Ç È@. The projector functions are so chosen 

that they are orthogonal to pseudo orbitals %ÅÆ'N®½S& � �É'S 
 

2.4  MOLECULAR DYNAMICS  

Molecular dynamics (MD) [249] is a powerful computational tool which calculates 

the classical trajectories of the ions in the system. MD in conjunction with a proper 

ensemble is used to calculate the finite temperature properties. In the present case, we 

have used canonical ensemble. In addition, we have also used a variant form of this 

technique to generate several equilibrium geometries. The crucial question is what is 

the form of inter-atomic potential from which the forces are derived. Traditionally, 

MD uses parameterized potentials where the parameters are generated using 

experimental data or a combination of ab-initio calculations. Obtaining the correct 

parameters is highly refined art. Indeed the results are dependent on the correctness of 

parameters. In fact more often parameters may turn out to be environment dependant. 
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An obvious remedy towards this problem is to calculate the forces on ions 

based on instantaneous electronic structure. Quite clearly, such calculation is 

computationally expensive and so usually limited to small sizes may be upto few 

hundred electrons. There are two different ways to carry out these calculations - Born 

Oppenheimer molecular dynamics (BOMD) and Car Parrinello MD [250]. In the 

former case, the electronic ground state is solved for each ionic configuration while in 

later electronic degrees of freedom are treated as a fictitious dynamical variables 

which leads to system of coupled equations of motion for both ions and electrons. All 

our calculations are based on BOMD simulations. 

 

Implementation of BOMD simulations 

As noted earlier, the electronic and ionic motions are decoupled in BO approximation. 

The electronic degrees of freedom are treated quantum mechanically while ionic 

motion is treated classically that is via Newton’s laws. The electronic ground state is 

obtained by appropriate electronic structure methods (in the present case, density 

functional theory) keeping the ions stationary. The nuclear motion evolves on a 

potential energy surface. With advances in the computer technology, this ab-initio 

MD proves to be a very powerful and predictive tool for tracking the dynamics of 

ions. We will discuss the typical strategy combining the electronic structure with MD.  

Consider a system consisting of M ions and N electrons. The first step is given 

positions R1, R2,….RN, the ground state and its total energy is obtained via DFT that 

is by solution of KS. Then the force on ion at RI is calculated from Hellmann-

Feynman theorem as   

 

�Ê ��
Ë*�P
ËPÊ  
(2.35) 

 

Where E(R) is the electronic energy. Having obtained the forces on ions, the 

trajectories are obtained by integrating Newton’s equations. Several numerical 

methods are available to solve the above equation of motion. Here we present a 

velocity-verlet algorithm [251, 252] as an example. In this algorithm the position and 

velocities at time (t + δt) is calculated as  
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  (2.36) 
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The calculated forces together with the set of velocities complete one step of MD, 

giving new set of positions for ions. At these new ionic positions, the KS equations 

are re-solved to get new electronic ground state. The process continues till sufficient 

data is generated which are ionic positions as a function of time at a given 

temperature. The entire process is schematically explained by the following flow 

chart.  

Thus at end of typical MD run, we have huge data in terms of positions and 

velocities of all ions in system, for a few hundred- thousand steps and for few tens of 

temperatures. The task is to analyse this data and extract relevant thermodynamic   

quantities. 

 

2.5  TOOLS AND TECHNIQUES 

There are variety of tools and techniques that we have used to analyze the data. First, 

we shall discuss the few techniques to obtain the ground state geometry. In the next 

section, various other ground state properties such as boding, density of states, isomer 

analyses etc. are studied. Lastly, we shall give the details of multiple histogram 

technique and few traditional thermodynamic indicators like Lindeman criteria and 

mean square displacement.   
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2.5.1 Geometry optimization 

 

Obtaining the correct ground state (GS) of a given cluster is a difficult task. It is well 

known that number of minima grows as factorially with the number of atoms. 

Therefore in almost all the cases, we have obtained several (50-500, depending on the 

size of the system) local minima and picked up the lowest as our GS. In addition other 
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techniques, like simulated annealing are carried out to ensure the reliability of the 

obtained structure. Although, there are several methods, there is no definite way to 

prove that given structure is the global minimum.  

We shall first understand the concept of global minimum which is associated 

with the optimized geometry. Generally the system could have number of potential 

barriers that should be overcome to reach for the global minimum. If the ions are 

instantaneously relaxed it is possible that system gets trapped into local minima. For a 

given potential energy surface there could be number of local minima. A simple 

illustration is shown in figure 2.2. In real systems, the nature of energy surface is quite 

complex. The total energy surface has to be spanned by overcoming the local 

potential barriers A, B to look for the global minima C.  

Many a times a saddle point is mistaken as the lowest energy configuration. A 

typical saddle point in 3D looks exactly as its name suggests. (figure 2.2-(b)) In order 

to distinguish between the saddle point and global minimum, the vibrational 

frequencies are calculated.  The saddle point will have negative values of vibration 

frequencies. 

 

         
 

(a)                                                                 (b) 

Figure 2.2 – (a) A two dimensional graph explaining the concept of local and global 

minima. (b) The saddle point in a 3D plot shown. 

 

One of the useful techniques to locate the global minima is simulated 

annealing.  It tries to mimic the natural process of solidification of liquids by slow 

cooling. The general concept can be understood as follows. Suppose we consider a 

A
B

C

PE 

Configurations 
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metal and heat it so that it melts and forms a liquid. At high temperatures in liquid 

state, all the atoms will move rapidly with respect to each other. As the liquid is 

slowly cooled, the atoms will move slower and slower. At certain temperature the 

liquid will solidify and if the cooling rate is slow enough, it may solidify in a 

crystalline state, which has the lowest state of energy. If one cools the liquid quickly 

or 'quench' it, the system may solidify in an amorphous or disordered state. In short, 

by slow cooling or 'annealing' one can reach the minimum energy state. This is the 

idea behind simulated annealing strategy. The strategy is applied typically in case of 

the clusters because a cluster can have number of local minima separated by energy 

barriers. 

We have carried out simulated annealing for obtaining the ground state 

geometry of the clusters. Starting from an initial random configuration, the system is 

heated to definite temperature which is generally above melting. Then the system is 

maintained for a sufficiently long time. This enables the atoms to overcome all the 

potential barriers and span the entire configuration space. Now the system is cooled 

extremely slowly so that the atoms proceed to the lowest energy configurations 

corresponding to some local minima. This yields number of low energy structures. 

The lowest amongst these is the probably ground state. The rate of cooling is the most 

important factor in the whole process.  

Now we describe another technique based on MD which has proved to be very 

useful. We use MD method to obtain the trajectories at three to four temperatures near 

and above melting. Then we select few hundreds of configurations either randomly or 

at regular intervals. These configurations are then quenched by several methods like 

steepest descent to obtain several minima. The lowest energy structure is then 

considered as GS. 

 

2.5.2 Ground state properties 

 

In previous sections we briefly introduced the theoretical framework in which the 

calculations are done. In what follows we will study different tools used to analyze 

the phase space data. The analysis of bonding is examined via electron localization 

function (ELF) [253] along with the total charge density. For a single determinantal 

wavefunction built from KS orbitals�Í, ELF is defined as  
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ρ = ρ(r) is valence electron density. D is the excess local kinetic energy density due to 

Pauli repulsion and Dh is the Thomas-Fermi kinetic energy density. The numerical 

values of ÎÏÐÑ are conveniently normalized to a value between zero and unity. A 

value of 1 represents a perfect localization of the valence charge, while the value for 

the uniform electron gas is 0.5. Typically, the existence of an isosurface in the 

bonding region between two atoms at a high value of ÎÏÐÑ , say, 0.70, signifies a 

localized bond in that region. The ELF can be analyzed by plotting the isosurfaces 

which locate the localization domains. This is most conveniently done by examining 

the isosurfaces for successive values of ELF, starting with the highest. We show 

isosurfaces of ELF for Ga13 and Ga12C clusters in figure 2.3. The locations of the 

maxima of ELF are called attractors and the set of all the points in space that can be 

connected to them by maximum gradient paths are called basins. Such basins are seen 

for few atom pairs in Ga13 while for Ga12C; all Ga atoms are connected with equal 

bonding strength. The detailed results are discussed in Chapter 3. In general, there are 

more than one attractor of an N-electron system, and hence, more than one basin. 
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Figure 2.3 - Isosurfaces of ELF for (a) Ga13 and (b) Ga12C at value 0.67. 

 

The various other ground state properties are analyzed via calculation of bond lengths, 

distance from center of mass, eigenvalue spectrum and HOMO-LUMO gap. For 

graphene and GNR problems, the density of states (DOS) are particularly important in 

order to understand the band structure. The finite temperature properties of clusters 

are examined with few thermodynamic indicators which are discussed in the next 

section. 

 

2.5.3 Thermodynamic indicators 

 

In this section we present the traditional melting indicators - root mean square bond 

length fluctuation and mean square displacement. We have calculated the heat 

capacity as a measure of ‘melting’. However, unlike bulk materials, where the solid to 

liquid transition is a single step process defined by the melting temperature, the 

clusters normally show a broad heat capacity curves spread over the range of 

temperatures. One needs the density of states (DOS) to calculate different 

thermodynamic quantities.  For this purpose it is required to have a set of simulations 

over a range of temperatures which are closely spaced. However, due to the high 

computational demand, we need a technique that allows us to reduce the number of 

temperatures being simulated and to reliably interpolate the behavior of the system at 

temperatures in between. A special technique called as multiple histogram (MH) 

provides a method to extract DOS from the simulation data and calculate specific 

heat. 
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Multiple histogram (MH) technique 

A complete thermodynamic analysis of the simulation is possible using MH which 

treats ions as classical particles moving on a potential energy surface V(R). The 

Hamiltonian H(R,P) = V(R) + K(P), where R is set of ionic coordinates and P is set of 

ionic momenta.  K(P) is the kinetic energy given by,  
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(2.39) 

 

The V(R) is obtained by minimizing the potential energy functional with respect to 

the density ρ. Since the Hamiltonian is separable, we can express full density of states 

as convolution of configurational density of states and kinetic density of states. The 

kinetic density of states are known analytically. The idea of MH is to extract the 

classical density of states Ý��* ) from the distribution of potential energy and then 

calculate the entropy, Þ � 1 ß�Ý��*
. The separate treatment of the configurational 

and kinetic parts is desirable, because the kinetic part of the problem can be handled 

analytically. A numerical sampling of the phase space is only required for the 

configuration space. Foe this, first the system is treated as a canonical ensemble of N 

particles, where the energy is exchanged with the surrounding. Popular techniques to 

control the temperature include velocity scaling, Nóse-Hoover thermostat. We have 

used Nóse-Hoover thermostat [254] to raise the temperature of the system. Starting 

from low temperature, the system is maintained at different temperatures that 

normally vary by 100 K. The simulation data of potential energies is obtained by 

carrying out MD at each of the temperatures. The time step for MD plays a crucial 

role in determining the total simulation time. Generally, initial few iterations are 

discarded for thermalization. 

We wish to interpolate the values over the range of temperatures including 

those for which simulations are not performed. The contribution of a point in the 

phase space of a system to the statistical quantity being observed is, in the canonical 

ensemble, proportional to the Boltzmann factor at that temperature. Hence, given a 

data point from the simulations of one temperature point, its contribution at another 
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temperature would be proportional to ±<àá�¹<¹â
. This observation is the basis of the 

approach proposed by Ferrenberg and Swendsen [255].  

Next, the entire potential energy spectrum ranging from V0 (corresponding to 

the lowest temperature) to maximum Vmax (corresponding to the maximum 

temperature) is divided into ‘n’ small bins of width δV = (Vmax – V0)/n. Vj is the 

central value of potential energy in each bin. For every temperature the number of 

potential energies falling in each bin are noted. Let nij be the number of times the 

potential energy assumes a value laying in jth bin at temperature i. Then the 

probability that the system takes a potential energy in jth bin at inverse temperature  

β = 1/KBTi  is estimated from the simulations as  

 

Å'S�'= �� B'Sk B'SS  (2.40) 

 

The standard canonical probability for finding the system with potential energy Vij is 

given by 

 

Ü'S ���ãu��S�#±<àáäpLu�å'
  
(2.41) 

 ãu��S�#�are the density of states and Lu�å'
 is the partition function. 

Equating and taking logarithm,  

 Þ'1W ��æ' ��å'�S � ß�B'S (2.42) 

 

Where 

 ÞS �� çß� ãu��S�#è (2.43) 
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This results into Nτ * NV equations, where temperature index 1≤i≤τ and bin index 

1≤j≤V. The equations are to be solved for ÞS and  Lu�å'
�by minimizing,  

 

�B'S�'�S é Þ'1W ��ß�e�B'SS i 
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(2.44) 

 

The final expression for Sj, partition function and internal energy are 
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Where <V> = U(T). In present thesis, we shall be concerned mainly with the canonical 

specific heat, defined as usual by 

 

ñ ��ËlË� (2.49) 

 

where U = <V + K>T  is the average total internal energy in a canonical ensemble at 

temperature T. Since we exclude the contribution of the center of mass (COM) motion 

to the ionic kinetic energy K, 
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with N being the number of atoms in the cluster. At sufficiently low T, in addition, 

since the ions show simple harmonic motion, the potential energy contains only the 

vibrational degrees of freedom without rotational and COM contribution i.e. its 

degrees of freedom = 3N − 6. Thus, at low T 

 

ó � Çôõ��� ��w 
 ö
1W� 
(2.51) 

     

Combining Eqns. 2.49, 2.50 and 2.51, one obtains the zero-temperature classical limit 

of the rotational plus vibrational specific heat such as 

 ñ° �� ��w 
 ÷«�
1W (2.52) 

 

which is conveniently used to normalize our plots of canonical specific heat. There 

are few other traditional phase change indicators such as root mean square bond 

length fluctuations (RMS) and mean square displacements. These are applied to the 

bulk systems as the melting indicators. 

 

Lindeman Criteria 

One of the first indicators for identifying melting temperature in bulk was proposed 

by Lindeman, where the thermal vibrations of the atoms in crystal are used to explain 

melting. The average amplitude of vibrations increases with the temperature. At a 

point the amplitude becomes so large that the atoms exceed their nearest neighbor 

distances and a melting process initiates. A simple criteria given by Lindeman is when 

root mean vibration amplitude reaches at least 10% of near neighbor distance, a 

melting might be expected. We have calculated ‘root mean square bond length 

fluctuation’, É»=� for every temperature and it indicates the average bond length 

fluctuations over complete time span. 
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Here, N is the total number of bonds. O'S�is the distance between atoms i and j, <…> 

represents a time average over entire trajectory. 

 

Mean square displacements (MSD) 

Another important indicator for phase change is MSD which is given by 
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(2.54) 

 

N is the number of atoms in the system and the average is carried out over M time 

origins spanning entire trajectory. MSD indicates the displacement of the ions with 

respect to their original position as a function of time. The MSD converge as the 

square of the radius of the cluster when system is in liquid state. In solid like region 

all the atoms perform small oscillatory motion about fixed point; hence the MSD are 

negligibly small. At higher temperature, the atoms perform diffusive motions, the 

MSD increase and eventually saturate to the value nearly equal to the diameter of the 

cluster. We have calculated the MSD for the individual atom. 

 

 Radial distribution function 

The radial distribution function (g(r)) is defined as average number of atoms between 

the region r and r+dr. The radial distribution function for a symmetric cluster will 

exhibit distinct peaks at low temperatures corresponding to different shells. With 

increasing temperature these peaks are expected to broaden due to oscillatory motion 

of ions. Eventually, at high temperatures, there will be a merger of these peaks 

indicating the diffusive motion of ions. 

 

2.6 ERROR ANALYSIS 

The results of any numerical calculation deviate from the exact value due to various 

types of errors. The errors could be due to implementation, statistical or 

computational. One should try to minimize these for the accurate results. To this end, 

we illustrate few convergence criteria that are to be followed to reduce the errors in 

calculation of Cv. The temperatures that are selected for the simulation should be such 
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that the histograms have sufficient overlap. This is essential because the simulation 

data is interpolated over large range of temperatures. In figure 2.4 we illustrate 

histograms for Au16 cluster which shows a good overlap for selected temperatures. It 

is interesting to observe the effect on specific heat curve if few temperatures are 

omitted resulting in a gap in histogram. The histograms for the same system with 2 

temperatures less are shown in figure 2.5. The corresponding Cv curves with ‘all’ and 

‘omitted’ temperatures are plotted together and shown in figure 2.6. It is clear from 

the figure that the resultant Cv curve varies and gives wrong interpretation if there is 

no good overlap of histograms.  

 

 
 

Figure 2.4 – Multiple Histograms for Au16 cluster. The temperatures range from 200 K 
to 2000 K and the histograms show a good overlap. 
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Figure 2.5 - Multiple Histograms for Au16 cluster with 325 K and 850 K are omitted as 
compared to figure 2.4. The missing temperatures are evident by a gap after 250 K 
and 700 K. 
 

 

 
 

Figure 2.6 – The specific heat curves calculated using ‘all’ temperatures and ‘omitted’ 
temperatures for Au16 
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Another important factor is the variation in the bin width. The Cv should be invariant 

under change of bin width atleast for appreciable range. We shall elaborate this point 

by plotting Cv for Au16 with bin widths 0 .001, 0.002 and 0.004, in figure 2.7. It is 

clear from the figure that Cv curve is same for all the bin width indicating the 

convergence under change in the bin width. 

 

 
 

Figure 2.7 – The specific heat for Au16 plotted with different bin widths. It is clear that 
for all three bin widths Cv has converged. 

 

Next, the statistical data leads to erroneous results and care should be taken to 

overcome errors due to these factors. The simulation time is an important factor for 

determining the statistical averages. As discussed earlier, during all the calculations, 

the first 30ps data is discarded for thermalization. The next question is how much data 

is sufficient for quantitatively correct trajectory averages. To decide this, the simplest 

way is to check for the convergence of Cv curve over different simulation time. We 

show specific heat curves for Au16 calculated over 60, 75, 90 and 120ps data in figure 

2.8. From the figure it is clear that low statistics does not give correct results. The 

simulation time of 90 and 120ps is well converged and hence we have used 90ps data 

for all the calculations. 
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Figure 2.8 - The specific heat for Au16 plotted with different simulation time. The 
convergence is seen as the simulation time is increased upto 120ps. 
 

We have tested all the systems using above convergence tests with respect to bin 

widths and temperatures during calculation of Cv and other indicators also.  

Next, we make a brief note of few other sources of errors.  

 

v Pseudopotential choice – We deal with the DFT based on pseudopotential 

approach. There are large number of PP available and one of the ways to 

choose an appropriate pseudopotential is by comparing the results of bond 

length and binding energies of dimer to an all electron calculation or to the 

experimental values. 

v The errors can also occur due to the insufficient energy cutoff and small 

simulation box. We note that these errors can be controlled and minimized by 

a proper choice of the relevant parameters. For example, the size of the box is 

chosen in such a way that, the cluster is completely isolated from its images. 

We have performed the initial calculations with minimum of three different 

box sizes 15, 20 and 30 to ensure that the results do not deviate. Similarly, Ecut 

should be chosen such that the results are appreciably converged with respect 

to the further increase in the Ecut. We have always performed several 
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preliminary calculations to fix the size of the box and energy cutoff for every 

system of interest.  

v The another source of error is number of k points, which are especially 

important in the calculation of graphene. To reproduce the peculiar band 

structure of graphene and obtain the correct V-shaped density of states, it was 

necessary to use 60 × 60 ×1 k mesh for the unit cell of graphene. For large unit 

cells, the optimization is carried out with 11 × 11× 1 while the self consistency 

is obtained over 27 × 27 × 1 mesh. We have repeated all these calculations for 

different sets of k points and used the optimum ones in all the calculations. 

v Errors can also arise due to factors like the choice of convergence criteria in 

the total electronic energy and forces, time interval taken for MD simulation, 

thermalization time etc. These errors can be minimized by adjusting the 

energy and force convergence criteria, time interval properly. However, 

changing these parameters to minimize the error can slow down the 

computation. Hence, optimum values of these parameters should be selected 

so as to speed up the calculation but still to maintain the accuracy of the 

results.  

The author empathetically notes that analysis and control of errors is a crucial 

component and must be paid adequate attention. This is especially important when we 

use readily available packages for our calculations. 
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3. Thermodynamics of carbon-
doped Al and Ga clusters: Ab initio 
molecular dynamics simulations 
 

3.1 INTRODUCTION 

One of the effective ways of tuning the properties of the clusters is by adding an 

impurity which induces many changes in the ground state geometry, chemical 

bonding and the stability of the host cluster. Hence, it is of considerable interest to 

probe the finite temperature behavior of such heterogeneous clusters. The magnitude 

of the changes so induced depends on the nature of the impurity. In many of the cases, 

it has been observed that a single atom can bring out significant changes in the 

geometry as well as in the nature of the bonding of the host cluster. A notable 

example being that of metal encapsulated Si cages, where prolate geometries of small 

Si clusters have been transformed into small cages of Si [256]. A metallic like 

bonding observed in pure Lin clusters gets modified into a combination of ionic and 

metallic bonding when doped with Sn atom [257]. Indeed, the idea of using an 

impurity to alter the properties of the small clusters has been exploited by a number of 

works. There have been some remarkable reports on finite temperature behavior of 

the mixed clusters [207, 212, 215, 258, 259]. An interesting example is that of 

icosahedral silver nanoclusters; where Mottet et. al. showed that a single impurity of 

Ni or Cu can considerably shift their melting temperature even for sizes of more than 

a hundred atoms [207]. Apart from altering the melting temperatures, an impurity can 

be used to suppress the fragmentation. For example, pure Si and Sn clusters in the size 

range of 15–20 atoms are known to fragment in the temperature range of 1200 K and 

650 K respectively [260]. It has been shown that Si clusters could be stabilized by 

adding an appropriate impurity like Ti and the fragmentation could be avoided at least 

until 2600 K [215]. Doping small Li clusters with Al and Sn has been shown to 

change the shapes of the heat capacity curves of the host clusters significantly [212, 

213]. Thus, clusters provide a playground for tuning up the properties with the help of 

an appropriate impurity.  
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A notable example of interest is that of Al13, where the well known stability of 

close shell systems within jellium approximation (for a total number of valence 

electrons equal to 8, 20, 28, 40, 58,…) has been exploited to enhance the stability by 

substituting the central Al atom with tetravalent impurities [224, 225, 226]. These 

studies were motivated by the possibility of using such stable clusters as building 

blocks for designing the novel solids. These investigations also have brought out 

many interesting observations. Substitutional doping of an Al13 cluster by a tetravalent 

atom results in a substantial gain in the binding energy. The maximum enhancement 

was seen for the carbon-doped cluster, Al12C. Interestingly, its bulk modulus turns out 

to be smaller than the other dopants. It is also observed that the behavior of the central 

atom is more like that of a metallic one rather than the expected covalent type. 

Although the ground state properties of Al13 and Al12X have been extensively probed, 

their finite temperature properties remain virtually unexplored. To the best of our 

knowledge, the only investigations reported to probe the finite temperature behavior 

of Al12C is that due to Seitsonen et. al.[227]. They found that the icosahedral structure 

is stable up to a temperature of the order of 930 K. Although they used ab initio 

molecular dynamics, their conclusion was based on simulations performed at only one 

temperature.  

In this work, we have chosen to investigate the finite temperature properties of 

Al13, Ga13, Al12C, and Ga12C. Although Al13 and Ga13 are isoelectronic, they are 

known to exhibit very different bonding. Al clusters in this size range show 

delocalized charge density exhibiting metallic like bonding, whereas small clusters of 

gallium are known to be covalently bonded and melt at temperatures higher than their 

bulk melting point. In addition, Al12C and Ga12C are 40 electron systems showing 

enhanced stability. Therefore, it is of considerable interest to investigate their finite 

temperature properties. The focus of the present work is to see the effect of doping on 

the heat capacity curves and to explore the correlation between their shapes and the 

ground state geometry. Indeed, our first principle simulations show a rather 

significant effect on the shape and the peak of the heat capacity, especially for Ga13. 

The chapter is divided into 3 sections. In section 3.2, we briefly note the 

computational details. Section 3.3 presents the results and discussions. First, we 

compare the zero temperature properties such as the ground state geometry and the 

nature of bonding of pure clusters to that of C-doped clusters, followed by a 
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presentation of the finite temperature results. The concluding section 3.4 ends with 

summary. 

 

3.2 COMPUTATIONAL DETAILS  

All the calculations are carried out using Born-Oppenheimer molecular dynamics. A 

DFT based simulation code, VASP [261] is used. The ion-electron interaction is 

described by Vanderbilt’s ultra soft pseudopotentials. We have used generalized 

gradient approximation given by Perdew-Burke-Ernzerhof (PBE) [262]. For Al, the 

energy cutoff of 9.50 Ry is used. For Ga, it is 9.54 Ry, while for C, it is 21.08 Ry. The 

size of the simulation box is 15Å which is found to provide sufficient convergence in 

the total electronic energy. The larger box of 20Å has also been tested and there was 

no variation in the results. In order to calculate the ionic heat capacities, we sample 

the phase space at 26 various constant temperatures ranging from 200 to 2500K using 

a Nośe thermostat [263]. For each temperature the system is maintained for 50,000 

iterations. The simulation time for a single iteration is 3 femtosecond (fs); hence the 

total duration of each temperature is 150 picoseconds (ps). Next, we have discarded 

the initial 30ps data (that is first 10000 iterations) for each temperature for the 

thermalization. The remaining 120ps are utilized for the calculations. Since the results 

converge for 90ps data, we have performed all the calculations over 90ps data. The 

total simulation time is thus approximately 2.4 nanoseconds (ns). Following the finite 

temperature study, the ionic heat capacity of each cluster is computed using the 

multiple-histogram (MH) method [173, 255, 264]. The computation of the heat 

capacity using the MH technique is sensitive to the number of temperatures at which 

the thermodynamic behavior of the cluster is simulated. The range and the number of 

temperatures are chosen to ensure an adequate overlap in the potential energy 

distribution. The method extracts the classical ionic density of states ß�Ωª��
� of the 

cluster, or equivalently, the classical ionic entropy Þ�*
 � �1W ß�Ωª��
� from the 

simulation data. With S(E) in hand, one can evaluate thermodynamic averages in a 

variety of ensembles. The method has been already discussed in Chapter 2. 

Among various traditional indicators of phase change, we have calculated the 

root mean square bond length fluctuations (δrms) and mean square displacement 

(MSD). δrms gives the average fluctuations in the bond lengths over the entire time 

span. In the present case, we have calculated separate δrms for bonds between surface 
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atoms and central atom and for bonds among surface atoms. MSD are calculated for 

individual atoms which differentiate between a disordered cluster and an ordered 

cluster. A disordered cluster at low temperatures will show a spread in the MSD of 

individual atoms, indicating a large variation in the displacements of different atoms 

in contrast to the bunching seen in MSD for an ordered cluster. We will elaborate this 

while discussing the finite temperature behavior of Ga13 and Ga12C. The nature of 

bonding between the atoms in a cluster is analyzed using the electron localization 

function (ELF) along with the total charge density and molecular orbitals. 

 

3.3 RESULTS AND DISCUSSIONS  

We begin our discussion by examining the ground state geometries of Al13 and Al12C, 

Ga13 and Ga12C, which are shown in figure 3.1. The ground state structure of Al13 has 

already been studied and is known to be a Jahn-Teller distorted icosahedron Our 

geometry (figure 3.1-(a)) is in agreement with the earlier results, in which the shortest 

bond between the central Al atom and the outer shell is 2.64Å. It has been reported 

that upon the substitution by carbon, the structure changes to a perfect icosahedron 

with all 12 Al atoms placed at 2.53Å from the central carbon atom. Thus, the most 

stable structure of Al12C is an icosahedron with the carbon at the center (figure 3.1-

(b)). The ground state geometry of Ga13 is known to be a slightly distorted decahedron 

(figure. 3.1-(c)), in which the distance from the central atom to surface atoms ranges 

from 2.69Å to 2.81Å [265].  It is interesting to note that upon doping, this decahedral 

structure changes to an icosahedron with the carbon atom at the center as shown in 

figure 3.1-(d). For Ga12C, the distance from the central carbon to the outer shell is 

2.53Å. The presence of carbon shortens the bonds between the central atom and the 

atoms in the outer shell.  

Further, analysis of the various bond lengths indicates that the nearest 

neighbor distance between the surface atoms shows opposite trends. For Al12C, we 

observe a reduction by 0.08Å, while for Ga12C; it increases by 0.09Å. 
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Figure 3.1 – The ground state geometries of (a) Al13 - distorted icosahedra (b) Al12C-
perfect icosahedra (c) Ga13 - decahedra and (d) Ga12C - perfect icosahedra.  
 

Table 3.1 shows relevant parameters such as the shortest bond lengths, the binding 

energy (BE), and the gap between the highest occupied molecular orbital and the 

lowest unoccupied molecular orbital (HOMO-LUMO). It can be seen that the 

introduction of carbon enhances the BE as well as the HOMO-LUMO gap in both 

clusters. 

 

System Al13 Al12C Ga13 Ga12C 

Symmetry Icosahedra Icosahedra Decahedra Icosahedra 

Bond length(A) 2.64-2.69 2.53 2.6-2.8 2.53 

BE(eV) -37.10 -42.30 -32.03 -37.37 

HOMO-LUMO 

gap(eV) 

1.56 2.00 1.40 2.00 

Melting peak (K) 1800 900 1200 800 

 
Table 3.1 - The symmetry, bond lengths, HOMO-LUMO gap and melting peak for 
pure and doped clusters. The bond lengths are shown between the central and 
surrounding atoms. 
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The nature of the bonding in all the clusters can be understood by examining the total 

charge density and the molecular orbitals. Jena and co-workers have extensively 

investigated the evolutionary character of the bonding in small Al clusters ranging 

from 2 to 15 [266]. It has been clearly shown that the clusters with more than seven 

atoms show an s-p hybridized character. In contrast to this, small clusters of Ga even 

in the size range up to 40–45 atoms are known to be covalently bonded [267].  

In figure 3.2, we show various isosurfaces of total charge density for all the 

clusters. It is interesting to note that for Al13 (figure 3.2-(a)), the charge around the 

central aluminum is not spherically symmetric and, in fact, shows the formation of 

direct bonds with six nearest neighbor Al atoms. The overall charge density is, as 

expected, well spread and delocalized. In contrast to this, for Ga13, the formation of 

localized bonds is evident (figure 3.2-(e)).  

Significant changes are observed in the bonding due to substitution by carbon 

atom. For Al12C, it can be seen that even up to 1/3rd value of the charge density 

(figure 3.2-(c)), most of the charge is around central carbon and is spherically 

symmetric, and indicating filling of carbon centered p orbitals. Evidently, there is 

charge transfer from all the surface atoms towards the central carbon atom. This 

establishes a partial ionic bond between the central carbon atom and the surface 

atoms. As a consequence, the size of the cluster shrinks. Such charge depletion also 

results in a weakening of the strength of the bonds between the surface atoms. The 

charge density in the case of Ga12C shows a similar behavior. Most of the charge is 

around the carbon and is spherically symmetric (figure not shown). In order to 

understand the nature of bonding in this cluster, we show an isosurface of charge 

density at low value of 1/7th in figure 3.2-(f). This brings out the localized nature of 

the charge in contrast to the delocalized one as seen in Al12C. 
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Figure 3.2 - Isosurfaces of total charge density at various values for all the clusters. 
The values of the maximum charge density for Al13 and Ga13 are 0.26 and 0.28, 
respectively, while for Al12C and Ga12C are 1.50 and 1.60, respectively. 
 

It may be pointed out that there is a subtle difference in the molecular orbitals (MOs) 

participating in the bonding of the surface atoms. Figure 3.3 shows isosurfaces of the 

charge density corresponding to a typical MO, near HOMO for both the carbon-doped 

clusters. The participating orbitals in Al12C are s-p hybridized, while in the case of 

Ga12C, they are purely p type.  

 



3. Carbon doped Al13 and Ga13 clusters 

 

80 
 

 
 

Figure 3.3 – Isosurfaces of charge density for the molecular orbital (HOMO-2) at 
about 1/4th of the maximum value. 
 

The eigenvalue spectrum for all the clusters is shown in figure 3.4. The effect of 

introducing the impurity on the eigenvalue spectra is remarkable. In both cases, the 

spectra became highly degenerate, reflecting the higher symmetry of the icosahedral 

structure. In fact, both spectra show a jellium like degenerate eigenvalue structure. 

The lowest level is s-like centered around the carbon. It may be pointed out that 

although the spectra for both the clusters are nearly identical to that of the jellium 

model, there is a difference in the nature of eigenfunctions between these two clusters. 

In the case of Al12C, all the eigenfunctions resemble corresponding jellium 

eigenfunctions of s, p, s, and d types. However, the eigenfunction of Ga12C, especially 

near HOMO, is quite different and is dominantly formed by p-type orbitals centered 

on the surface Ga atoms. 

 

 
 

Figure 3.4 – Eigenvalue spectra for all the systems. The topmost short line (blue) 
indicates LUMO. 
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So far, we have investigated the zero temperature properties
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most remarkable observation is the sharp nature of
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Figure 3.5 – Normalized specific heat for Al
specific-heat curves are similar, but the melting temperature is lowered by almost 
800 K upon doping. 
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Figure 3.6 – Normalized specific heat for Ga
as compared to Ga13 
 

This feature can be understood in light of the change in the nature of the ground state 

geometry and the differences in the nature of bonding. Ga
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 and Ga13 clusters 

Normalized specific heat for Ga13 and Ga12C. The Ga12

This feature can be understood in light of the change in the nature of the ground state 

geometry and the differences in the nature of bonding. Ga12C is a well ordered 

structure, with all 12 Ga atoms placed at a spherical shell at 2.53Å from the center. In 

addition, all the nearest neighbor bond distances are the same. In contrast to this, Ga

distorted structure with the nearest neighbor bond lengths varying between 2.57 

and 2.8Å. The manifestation of these differences can be seen in ELF as examined 

isosurfaces. We have examined the isosurfaces for these two

continuously varying the isovalue, starting with the maximum of 

This enables us to locate the localized regions, locations of attractors, and the 

of these regions. There are 13 attractors centered on the

, we show the isosurface of ELF for both Ga13 and Ga12

value, at which the first merging of these regions takes place

C. The most interesting aspect is that at this value, all the regions merge and 

contain all the atoms. This indicates that all the surface atoms experience a similar 
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together. In contrast to this, Ga13 shows a fragmented structure (f

regions establishing the connectivity is seen at a high value

ELF at 0.77. The process of merging continues as the ELF value is decreased. At a 

value of 0.72, we find five pairs of atoms connected to each other. This indicates that 

large number of pair of atoms are strongly bonded as compare
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12C is a sharp peak 

This feature can be understood in light of the change in the nature of the ground state 

C is a well ordered 

at 2.53Å from the center. In 

addition, all the nearest neighbor bond distances are the same. In contrast to this, Ga13 

varying between 2.57 
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isosurfaces. We have examined the isosurfaces for these two clusters by 

of 0.9 down to 0.55. 
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that all the surface atoms experience a similar 

 hence, will “melt” 

(figure 3.7-(a)). The 

regions establishing the connectivity is seen at a high value of 

value is decreased. At a 

atoms connected to each other. This indicates that 

compared to Ga12C. 
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This is responsible for the higher melting temperature in this cluster. All the regions 

merge at a lower value of ELF 0.55. Figure 3.7 brings out this contrast and the 

fragmented nature of the regions. Thus, in Ga13, most of the atoms experience a 

different environment and are bonded with the surrounding atoms with varying 

strength, which results in a broad transition region (or step by step bond breaking). A 

similar detailed analysis for Al13 and Al12C reveals that the contrast is not as 

significant since the symmetry remains the same in both clusters. 

 

 

 

 

Figure 3.7 – Isosurfaces of ELF for Ga13 and Ga12C at the value of 0.67 

 

The mean square displacements for the individual atoms bring out the difference 

between the Ga13 and Ga12C explicitly. Figure 3.8 shows MSD for both the clusters at 

325 K. MSD at higher temperature show similar behavior. However, at lower 

temperatures, MSD prove to be a crucial indicator distinguishing the nature of the 

“motion” of atoms in these two clusters. It can be seen from figure that MSD for pure 

and doped clusters are significantly different at 325 K. At this temperature, there are a 

significant number of atoms in Ga13 showing considerable displacements from their 

“original” positions, whereas in the case of Ga12C, all the atoms have very small 

values. Remarkably, the atoms having large values of MSD in the case of Ga13 belong 

to different basins. 
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Figure 3.8 – Mean square displacement for Ga13 and Ga12C at 325 K. The MSD are 
shown for individual atoms. 
 

The dynamics of the clusters can be described by examining the trajectories of atoms 

at various temperatures. It is observed that around 400 K, the Al13 visits its first 

isomer, a decahedron, quite frequently. At 800 K, there is diffusive motion of the 

surface atoms. The central aluminum atom comes out at about 1200 K, but gets 

replaced by other aluminum atoms, retaining the shape of the cluster. This process 

continues up to 1800 K, where the shell structure is completely destroyed. The peak in 

the heat capacity curve is associated with the destruction of the icosahedron. Ga13 also 

melts in a similar manner. It undergoes isomerization around 325 K from decahedron 

to icosahedron. At around 850 K, the central Ga atom comes out of the shell and gets 

replaced by another Ga atom. This process continues up to 1000 K. Around 1400 K, 
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the shell structure is completely destroyed and a peak occurs in the heat capacity 

curve. Thus, in pure clusters, the melting transition is a two step process. 

Isomerization is seen around 350 K, whereas the complete destruction of the shell 

structure is seen at a much higher temperature which is associated with the peak in the 

heat capacity curve. Impurity doped systems show a completely different behavior. In 

the case of Al12C, there is no isomerization seen. Neither carbon atom nor surface 

atoms show any rigorous motion up to 700 K. Around 700 K, carbon is seen to diffuse 

on the surface, destroying the shell structure. Thus, the melting is a single step 

process. Unlike Al12C, the surface atoms Ga12C show significant motion around 325 

K due to the isomerization from icosahedron to decahedron. The carbon atom, 

however, remains at the center up to 700 K. Melting is signified by carbon diffusing 

to the surface, followed by destruction of the shell. Again, melting is a single step 

process leading to a peak around 800 K. Thus, in both doped clusters, removal of the 

carbon from the center initiates the melting. The above observations are substantiated 

by the behavior of δrms of all these clusters. We have plotted the δrms for the central 

atom and the average for all the surface atoms in figure 3.9. The figure clearly brings 

out the difference in the motion of central atom and surface atoms. For all the clusters, 

the central atom does not show any appreciable rise in the value of δrms. Around 400K 

and above, all the clusters except for Al12C show distinct movements of surface 

atoms, which are due to the isomerization observed around that temperature. Finally, 

we note an interesting aspect of our results. Although the carbon-doped clusters have 

higher BE (~5 eV), they melt at much lower temperatures. The enhanced BE is due to 

the complete filling of fivefold degenerate HOMO due to the addition of an extra 

electron, an effect observed not only for carbon but also for other tetravalent elements 

such as Si, Ge, Sn, etc. However, substitution of carbon at the center weakens the 

bonds between surface atoms. This initiates the melting process at much lower 

temperature. It may also be pointed out that BE is a measure of complete dissociation, 

while the process of melting does not change the number of electrons, retaining the 

close shell property. 
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Figure 3.9 – δrms for surface atoms (filled circles, blue) and central atom (filled 
diamonds, red) for all the clusters averaged over 90ps. 

 

3.4 SUMMARY AND CONCLUSIONS 

We have carried out extensive first principle thermodynamics simulations for Al13 and 

Ga13 with and without substitution by single carbon impurity. Al13 is known to be a 

distorted icosahedra with the al-al bond distance varying between 2.64-2.69Å. Upon 

doping, it changes to perfect icosahedra. Ga13, on the other hand is a distorted 

decahedra with bond distance between 2.6-2.8Å. Interestingly, it also changes to 

perfect icosahedra upon doping. In both the doped clusters carbon occupies the central 

position at distance of 2.53Å from the surface atoms. The analysis of charge density 

and bonding shows that there is a partial change transfer from the surface atoms to the 

central carbon in both the doped clusters. This results in weakening of the surface 

bonds and the size of the cluster shrinks. As a consequence there is a substantial 

reduction seen in the melting temperature of the doped clusters. Al13 and Ga13 melt at 

around 1800 K and 1200 K respectively while interestingly, both the doped clusters 

are seen to melt at around 800-900 K. Apart from the reduced in the melting 

temperature, carbon impurity is seen to induce a substantial change in the shape of the 

heat capacity curve in the case of Ga. The heat capacity curve for Ga12C shows a 
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much sharper transition as compared to Ga13. The origin of such sharp peak lies in the 

different bonding strengths of Ga13 and Ga12C. Our analysis of electron localization 

function clearly brings out this difference. In Ga13, there are large number of pair of 

Ga atoms bonded to each other with similar bonding strength. As the clusters is 

heated, these pairs melt over range of temperature resulting in a broad specific heat 

curve. On the contrary, in Ga12C is symmetric icosahedra with all 12 Ga atoms are 

bonded with same strength and hence melt together yielding a peak in specific heat 

curve. The examination of mean square displacements at low temperatures also show 

that in case of Ga13, there are considerable number of atoms showing displacements 

from their mean position, while comparatively in Ga12C, the value of MSD are less. 

The close examination of the ionic trajectories and δrms show that both Al13 

and Ga13 visit their isomers frequently at low temperature. Around 800 K the diffusive 

motion initiates and the central atoms comes out around 1200 K but gets replaced by 

the surface atom. The melting is signified by the destruction of the shell. In doped 

clusters, Ga12C undergoes isomerization from icosahedra to decahedra. In both the 

doped clusters, the central carbon remains inside upto 700 K. Around 800 K, the 

central carbon comes out, the shell structure is destructed and cluster melts.  

It is important to note the binding energy of the carbon-doped clusters, as 

noted in table 3.1, is higher by about 5eV. However, their melting temperatures are 

lower than the corresponding host cluster.  
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4. Stability of gold cages (Au16 and 
Au17) at finite temperature 
 

4.1 INTRODUCTION 

In recent years gold nanoparticles have attracted much attention due to their vital role 

in nanoscale electronic, optical and medical diagnostic devices [268, 269]. One of the 

interesting applications of these clusters is in the area of catalysis. Gold in its bulk 

form is known to be a noble metal. But, gold in nanoregime has shown size-sensitive 

reactive properties and is considered to be a promising chemical catalyst [270, 271, 

272]. Owing to such potential applications, a large amount of experimental [273, 274, 

275] and theoretical [165, 166, 196, 276, 277, 278, 279] work probing structural and 

electronic properties of Au clusters has been reported. These reports reveal that the 

ground state (GS) geometries of gold clusters with sizes up to a few tens of atoms 

exhibit interesting and strikingly different trends. These undergo a very interesting 

structural evolution. There has been a debate about the size at which the planar to 

non-planar transition occurs [164, 276, 280]. A very recent experimental evidence of 

hollow cage structures [166] (for n = 16, 17, 18) analogous to C60 has generated an 

excitement and focused interest on gold clusters in this size range. Such hollow cages 

are predicted for larger sizes as well [281, 282] which opens up new possibilities of 

encapsulating impurities like transition metal atoms for tuning their properties [283, 

284]. Almost all the studies reported so far on these cages pertain to zero temperature 

properties. Since the realistic applications are at finite temperatures, typically at room 

temperature and above, it is of considerable importance to investigate their stability 

and other properties at finite temperatures. In the present work we investigate the 

finite temperature behavior of two clusters, namely Au16 and Au17, using ab initio 

method. 

Finite temperature investigations of small clusters have brought out many 

interesting and at times counterintuitive facts [179, 176] which have been reviewed in 

Chapter 1. In nanoregime, there are two scales; the first one consists of a few 

hundreds to few thousands of atoms where the properties such as melting temperature 
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show the expected monotonic trend as a function of size of the cluster. However, in 

the size range of few tens to few hundreds of atoms the details of the electronic 

structure and the ground state geometry which could be quite different from the bulk 

can have significant influence on finite temperature properties.  

There have been a few calculations reported on the finite temperature behavior 

of small gold clusters with classical molecular dynamics (MD) using parameterized 

potentials like Voter-Chen [285, 286]. However, these potentials are based on two-

body or three-body interactions and fall short of mimicking the real scenario of many 

interacting electrons and ions. On the other hand, simulating finite temperature 

behavior with ab initio method is computationally very expensive. To the best of our 

knowledge, there are only two ab initio simulations reported so far. Soulé et.al. have 

simulated finite temperature behavior of gold clusters with 7, 13 and 20 atoms [287].  

Krishnamurty et. al. carried out extensive first principles MD simulations to 

investigate finite temperature behavior of Au19 and Au20 [199].  The ground state 

geometry of Au19 is the same as that of Au20 except for the missing corner atom of the 

pyramid. Both the clusters melt around 780 K, a temperature much below the bulk 

melting temperature. However, Au19 undergoes a vacancy-assisted melting transition 

leading to a broad peak in the heat capacity curve whereas Au20 with a symmetric 

ground state has a well-defined peak in the heat capacity curve. 

In the present work we have investigated the stability of Au16 and Au17 gold 

cages at finite temperatures. These are the smallest cages of gold clusters found so far. 

The capacity of these clusters to hold an atom inside the cage makes them 

technologically very interesting. The isomer distribution of these clusters reveals that 

the isomers of Au17 are more symmetric than those of Au16. Further, the isomer 

energy distribution of Au16 is continuous whereas that of Au17 shows gaps. Our 

simulations indicate that these cages are stable up to at least 850 K with Au17 having a 

noticeable peak in the heat capacity curve and Au16 with a broad transition region. In 

section 4.2 we briefly discuss the computational details. Results and discussion are 

presented in section 4.3. We conclude with summary in section 4.4.  

 

4.2 COMPUTATIONAL DETAILS 

All the calculations have been performed within the framework of ab initio density 

functional theory (DFT).We have employed the plane-wave method where the core-
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valence interactions are described using Vanderbilt’s ultrasoft pseudo-potentials [245] 

as implemented in the VASP package. It may be noted that pseudopotentials used in 

the plane-wave method incorporate the relativistic effects. For the purpose of 

calculating the equilibrium geometries, we have used generalized gradient 

approximation (GGA). The calculations have been carried out in two steps. In the first 

step we have obtained 50 distinct isomers for both the clusters. In order to get many 

distinct initial configurations for geometry optimization, constant temperature Born–

Oppenheimer molecular dynamics (BOMD) runs were carried out at four different 

temperatures 300 K, 600 K, 900 K and 1200 K each with a time-scale of 60ps. 

Around 150 configurations were chosen from these initial runs by examining the 

potential energy as a  function of time. The resulting isomers after minimization were 

examined visually as well as by carrying out the nearest neighbor bond length 

analysis so as to obtain geometrically distinct structures by removing the duplicates. 

Next, for calculating the heat capacities, BOMD simulations have been carried out for 

14 different temperatures in the range of 200 K to 2000 K for Au16 and 12 

temperatures in the range of 200 K to 1600 K for Au17. Each cluster is maintained at 

each temperature for a time period of at least 150ps using Nośe thermostat [288]. For 

each of the temperature first 30ps of data are discarded for thermalization. Thus, the 

total simulation time is around 2.4ns. An energy cut-off of 179.7 eV is used for the 

plane-wave expansion of the wave function. We have used a convergence of 10−4 eV 

in the total energy during the self-consistency. The size of the simulation box is 

chosen to be 20Å which is found to be sufficient for the energy convergence. The data 

are used to calculate the ionic specific heat of each cluster using multiple histogram 

method (MH). The calculation of the heat capacity using the MH technique is 

sensitive to the number of temperatures at which the thermodynamic behavior of the 

cluster is simulated. The range and the number of temperatures are chosen to ensure 

an adequate overlap of the potential energy distribution. The MH method extracts the 

classical ionic density of states ß� Ý��*
 of the cluster, or equivalently the classical 

ionic entropy Þ � 1 ß�Ý��*
� from the simulation data. With S(E) in hand, one can 

calculate the thermodynamic averages in a variety of ensembles. We have also 

calculated the mean square displacements (MSD), an important parameter for 

monitoring the phase change. The MSD of the cluster indicates the displacement of 

the ions with respect to their original positions as a function of time. Thus, one 
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expects MSD to converge to the square of the radius of the cluster when the system is 

in liquid-like region. We have also calculated the radial distribution function [g(r)]. It 

is defined as the average number of atoms within the region r and r + dr from the 

centre of mass of the cluster. The radial distribution function for a symmetric cluster 

will exhibit distinct peaks at low temperatures corresponding to different shells. With 

increasing temperature these peaks are expected to broaden due to oscillatory motion 

of ions. Eventually, at high temperatures, there will be a merger of these peaks 

indicating the diffusive motion of ions. 

 

4.3 RESULTS AND DISCUSSIONS 

We begin our discussion by noting the ground state geometries and some low-lying 

isomers of Au16 and Au17 which are shown in figures 4.1 and 4.2 respectively. It may 

be pointed out that the ground state of Au16 and Au−
16 have been reported and are 

known to be different from each other [166, 289]. The ground state geometry of 

neutral cluster is a symmetric flat cage while that of anionic cluster is a hollow cage. 

Our results agree with those reported in the literature. Since the isomers at various 

energies are relevant to the finite temperature analysis, we have analyzed about 50 

distinct isomers within the energy range of 0.4 eV above the ground state energy. 

These isomers can be approximately grouped into three categories. The low energy 

isomers (within 0.1 eV with respect to the ground state) are characterized by the flat 

cage structures (figures 4.1-(a)–(c)). These structures differ from the ground state with 

respect to their base and capping. The next in the energy scale (from 0.11 to 0.15 eV 

with respect to the ground state) are the hollow cages which are characterized by the 

existence of two six-membered distorted rings arranged nearly parallel to each other 

(figures 4.1-(d) and 4.1-(e)). These rings give rise to a hollow cage-like structure. 

Typically, these structures do not display any definite symmetry and once again the 

isomers in this class differ by the nature of the caps on these rings and small 

distortions. Lastly, still higher in the energy scale (above 0.16 eV with respect to the 

ground state) are the intermediate structures between the above two as shown in 

figures 4.1-(f)–(h). 
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(a) 0.00 eV      (b) 0.088 eV     (c) 0.100 eV 
 

 
 

                                     (d) 0.138 eV       (e) 0.149 eV     (f) 0.192 eV 
 

 
 
                                      (g) 0.217 eV        (h) 0.252 eV      (i) 0.354 eV 
 
 
Figure 4.1 –The ground state geometries and various isomers of Au16. The numbers 
correspond to the difference in the energy with respect to the ground state. 
 
Most of these have only one five or six-membered ring. We also note the existence of 

a highly symmetric hollow cage (figure 4.1-(i)) which is known to be the ground state 

of Au−
16. This isomer has an energy which is about 0.35 eV higher with respect to the 

ground state. Indeed this isomer is observed in our simulations at around 850 K. 

Another significant characteristic of these isomers is their energy distribution which 

turns out to be almost continuous. We will discuss its possible effect on the nature of 

the heat capacity curve and contrast its behavior with that of Au17. 
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(a) 0.00 eV          (b) 0.015 eV             (c) 0.071 eV 

 

(d) 0.085 eV         (e) 0.136 eV              (f) 0.317 eV 

 

(g) 0.341 eV           (h) 0.448 eV               (i) 0.585 eV 

Figure 4.2 –The ground state geometries and various isomers of Au17. The numbers 
correspond to the difference in the energy with respect to the ground state. 
 

In contrast to Au16, the ground state of Au17 exhibits a hollow cage structure. In fact 

there are two nearly degenerate geometries (very close in energy ≈0.01 eV) which are 

the probable candidates for the ground state as shown in figures 4.2-(a) and 4.2-(b) 

respectively. While one of the structures has two pentagons stacked over each other 

and three distinct atomic caps, the other one has a six-membered ring at the centre. 

Figures 4.2-(c) and 4.2-(d) show the next low-lying isomers which are also hollow 

cages higher in energy by 0.07 eV. In figure 4.2-(e) we show a caged structure which 

is slightly distorted while figures 4.2-(f) and 4.2-(g) represent high energy cages with 

energy around 0.35 eV. Interestingly, none of the structures discussed so far have a 
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Figure 4.3 – Normalized specific heat for Au16 and Au

In order to make a detailed analysis of the ionic motion we examine the atomic

trajectories in the form of movies. It is observed that at low temperatures (up to
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a high energy isomer with such a trapped 

atom is seen. This isomer occurs at 0.47 eV higher in energy with respect to the 

lowest energy structure. The noteworthy point is that the isomers even up to a typical 

gy of 0.35 eV consist of predominantly hollow cages, either symmetric or 

We now present the calculated ionic specific heats in figure 4.3. It is clear 

show a rather broad heat capacity curve with 

liquid transition from 600 K to 1000 K. 

K and a noticeable peak at 900 K. 

peak may be identified as the melting peak. Typically in the finite size systems, 

temperature is not sharp. At low temperatures, it is easy to characterize the 

like, where the atoms execute small oscillatory motion. In this region 

like state where there is a clear 

e motion of the atoms throughout the cluster. The MSD in this region are of 

the order of square of the radius of the cluster and tend to saturate. The transition 

region around the melting peak cannot be definitely characterized as solid-like or 

melting features can occur 

 
and Au17. 

we examine the atomic 

trajectories in the form of movies. It is observed that at low temperatures (up to 400 
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K), Au16 cluster is seen to visit the first isomer (figure 4.1-(b)) quite frequently. 

Further, up to 600 K, in addition to the first isomer, the next low energy structures 

(figures 4.1-(c) and 4.1-(d)) are also observed. Thus, up to this temperature the cluster 

moves through either flat or hollow caged isomers. Around 700 K, the cage pattern is 

seen to be disturbed and a diffusive motion of the atoms results in a high energy 

distorted flat cage structure (figure 4.1-(h)). Such distortions are retained till 900 K 

above which the cluster is seen to melt. MSD at 1000 K and onwards are seen to reach 

about the square of the cluster radius as shown in figure 4.4. Thus, from 600 K 

onwards the movie reveals that the cluster is dominated by isomerization from flat 

cages to hollow ones and again to distorted flat type. The process continues even 

above the melting temperature.  

For Au17, a weak shoulder at 500 K can be attributed to isomerization. Up to 

800 K, the shape of the cluster remains more or less cage-like in spite of distortions. 

However, we do not observe a complete destruction of the cage. The motion clearly 

indicates the dominance of isomers in the sense that at least up to 1000 K many 

isomers belonging to hollow or distorted type of cages are observed. It is only above 

1000 K or so, we observe the open structures and consequently, complete destruction 

of cages. Indeed, around this temperature the MSD reach the value of 15Å2 as shown 

in figure 4.5. A significant observation that emerges from our studies is that the cage 

structure is very stable and retains its shape at least till 1000 K resulting into a heat 

capacity curve with relatively sharper peak. 
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Figure 4.4- Mean square displacements of Au16 over 120 ps. 

 

 

 

Figure 4.5- Mean square displacements of Au17 over 120 ps. 

 

The stability of the hollow cages can be established by calculating the radial 

distribution functions at various temperatures. In figure 4.6 we show the radial 

distribution function for Au17. It shows three prominent peaks even up to 500 K, 

corresponding to the three shells indicating the existence of the cage structure. At 600 

K, the three shells merge into two, indicating a diffusive motion of ions within the 

shell. This shell structure is retained up to 850 K. Around melting temperature, that is 
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≈1000 K, these two peaks are seen to merge into a single one. The figure also clearly 

reveals that there are no atoms within the radius of about 2.0Å. 

 
 

Figure 4.6 - Radial distribution function of Au17. 

 

Now we turn to examine the isomer energy distribution as shown in figure 4.7 and its 

influence on the specific heat. The significance and relationship between the nature of 

the isomer energy distribution and the shape of the heat capacity curve has been 

discussed by Bixon and Jortner [290]. It can be seen from figure 4.7 that the isomer 

distribution of Au16 is relatively continuous while Au17 shows a step-like structure or 

more precisely multiple bunched level structure. As discussed by Bixon and Jortner, 

such a structure leads to hierarchical isomerization which is seen as a weak shoulder 

in the specific heat curve of Au17. In the case of systems exhibiting gapless spectra 

(such as Au16) there is no clear transition in caloric curve and that leads to a relatively 

broad specific heat curve. It is interesting to note that the ordered structures normally 

lead the isomer energy distribution having gaps. In the case of disordered ground 
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states, a minor rearrangement of the atoms gives rise to many nearly degenerate 

isomers leading to an almost continuous spectrum [193, 267, 291]. 

 
Figure 4.7- The distribution of isomer energies for Au16 and Au17. 

 

Finally, we compare the specific heats of these two clusters with those of Au19 and 

Au20. [199] It may be recalled that a highly symmetric Au20 cluster shows a sharp 

melting peak at around 770 K while Au19 having one vacancy (the missing apex atom 

of the pyramid) has a broad peak. In contrast with Au20 both the clusters here show 

rather broad specific heat curves. This is consistent with the fact that the ground state 

of Au20 is highly symmetric while both Au16 and Au17 are relatively disordered. 

Although Au19 retains the symmetry, the broad specific heat curve has been attributed 

to the vacancy, i.e. the absence of vertex atom. 

 

4.4 SUMMARY AND CONCLUSIONS 

We have carried out finite temperature simulations of the smallest gold cages of gold, 

namely Au16 and Au17 using ab initio density functional molecular dynamics. Au16 is a 

flat cage while Au17 shows a hollow caged structure. These results are in agreement 

with the earlier results. Next, we have extensively analyzed about 50 different isomers 

for both the cages. These isomers are observed at about 0.4 eV above the ground state 

energy. The isomers have been identified and categorized on the basis of their 

structural variation. The isomer analysis plays a crucial role in the finite temperature 

properties. Our calculated heat capacity curves show that both the clusters show rather 
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broad curve with few notable differences. Au16 shows solid-liquid transition from 

600-1000 K, while Au17 shows a noticeable peak at 900 K. A weak shoulder seen at 

500 K is attributed to isomerization. The careful observation of the ionic trajectories 

shows that Au16 visits number of isomers upto 600 K after which the cage structure is 

disturbed and diffusive motion is seen. Such distortions are retained till 900 K above 

which the cluster is seen to melt. Au17 on the contrary, remains stable up to 1000 K. 

Upto 1000 K; it visits number of isomers but retains the cage structure in spite of the 

distortions. It is only above 1000 K, we get open structure indicating the melting.  

  The isomer energy distribution has a close association with the nature of the 

heat capacity curve. For Au16 the continuous isomer energy distribution leads to a 

broad peak ranging from 600 K to 1000 K. In case of Au17 a step-like energy 

distribution gives a relatively sharper peak. 
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5. A Systematic study of electronic 
structure from Graphene to 
Graphane 
 

5.1 INTRODUCTION 

Carbon is regarded as one of the most versatile elements in the periodic table, forming 

a wide variety of structures such as three-dimensional sp3 bonded solids like diamond; 

sp2 hybridized two-dimensional systems like graphene and novel nanostructures like 

fullerenes and nanotubes. The electronic structure and the physical properties of these 

carbon-based materials turn out to be exotic [292].  Although the existence and the 

properties of the three-dimensional allotrope, graphite, containing weakly coupled 

stacks of graphene layers were well known [33], the experimental realization of a 

monolayer, graphene, brought forth a completely different set  of novel properties 

[293, 294]. The triangular bipartite lattice of graphene leads to an electronic structure 

having a linear dispersion at the Dirac points. The low energy behavior of such two-

dimensional electrons in graphene has been a subject of intense experimental and 

theoretical activity exploring the electronic, magnetic, mechanical and transport 

properties, etc. For a recent review the reader is referred to Castro Neto et. al. [295]. 

Although graphene is considered as a prime candidate for many applications, 

the absence of a bandgap is a worrisome feature for the application to solid state 

electronic devices. In the past, several routes have been proposed to open a band gap 

[296, 297, 298]. The most interesting one is the recent discovery of a completely 

hydrogenated graphene sheet named as graphane. Graphane was first predicted by 

Sofo et. al. [20] on the basis of electronic structure calculations and has been recently 

synthesized by Elias et. al. [21]. The experimental work also showed that the process 

of hydrogenation is reversible, making graphane a potential candidate for hydrogen 

storage systems. Since upon hydrogenation, graphene, a semi-metal, turns into an 

insulator, it is a good candidate for investigating the nature of the metal–insulator 

transition (MIT).  



5. Electronic structure of graphene and graphane 

 

101 
 

There are few reports investigating the electronic structure of graphene sheets as a 

function of hydrogen coverage leading to the opening of a band gap. Most of these are 

restricted to a small number of hydrogen atoms. The electronic structure of hydrogen 

adsorbed on graphene has been investigated using density functional theory (DFT) by 

Boukhvalov et. al. [23] and Casolo et. al. [24]. Their results support the possibility of 

using graphene for the hydrogen storage. Their work also shows that the 

thermodynamically and kinetically favored structures are those that minimize the 

sublattice imbalance. Flores et. al. have investigated the role of hydrogen frustration 

in graphane-like structures using ab initio methods and reactive classical molecular 

dynamics [299]. The stability trends in small clusters of hydrogen on graphene have 

been discussed in a review by Toman et.al. [300]. A recent work by Zhou et. al. [27] 

predicted a new ordered ferromagnetic state obtained by removing hydrogen atoms 

from one side of the plane of graphane. Recently, Wu et.al. [301] have reported 

implications of selective hydrogenation by designing an array of triangular carbon 

domains separated by hydrogenated strips. The electronic structure of the interface 

between graphene and the hydrogenated part has been investigated by Schmidt and 

Loss [302]. They show the existence of edge states for a zigzag interface having a 

strong spin–orbit interaction. An interesting experimental work using scanning 

tunneling microscopy by Hornekaer et.al. [303, 304] demonstrates clustering of 

hydrogen atoms on a graphite surface. The work shows that there is a vanishingly 

small adsorption barrier for hydrogen in the vicinity of already adsorbed hydrogen 

atoms. The question of the effect of the defect on the electronic structure of atomic 

hydrogen has been addressed by Duplock et. al. [53] within density functional theory. 

They show that the electronic gap state associated with the adsorbed hydrogen is very 

sensitive to the presence of defects such as Stone–Wales defects. The localization 

behavior of disordered graphene by hydrogenation has been reported within the tight 

binding formalism [28]. The potential of hydrogenated graphene nanoribbons for 

spintronics applications has been investigated within DFT by Soriano et.al. [305]. The 

defect and disorder induced magnetism in graphene (including adsorbed hydrogen as 

a defect) has been studied by Yazyev and Helm mainly using Hubbard Hamiltonian 

and DFT [306, 307, 308].  Theoretical investigations have also been carried out for a 

single hydrogen defect on a graphane sheet using the GW method [22], and for one 

and two vacancies in graphane [309] using DFT. It has been shown that interaction 
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between adatoms in hydrogenated graphene is long range and its nature is dependent 

on which sub lattice the adatoms reside in [310]. These results also suggest that the 

adatoms tend to aggregate. A very recent work by Singh et.al. explores the formation 

of quantum dots as a small island of graphene in a graphane host [311]. 

In the present work, we investigate some aspects of graphene–graphane 

transition by probing the electronic structure of hydrogenated graphene. The objective 

of our work is to understand the evolution of the electronic structure upon 

hydrogenation and gain some insight into the way bandgap opens. Therefore we have 

carried out extensive calculations for eighteen different hydrogen coverages between 

graphene (0% hydrogen coverage) and graphane (100% hydrogen coverage) within 

the framework of DFT. Our results suggest that the hydrogenation in graphene takes 

place via clustering of hydrogens. Analysis based on density of states (DOS) indicates 

that before the gap opens (as a function of hydrogen coverage) the hydrogenated 

graphene sheet acquires a metallic character. This metallic state is spatially 

inhomogeneous in the sense; it consists of insulating regions of hydrogenated carbon 

atoms surrounded by the conducting channels formed by the bare carbon atoms. We 

also show that it is possible to tune the electronic structure by the selective decoration 

of hydrogen atoms to achieve semiconducting or metallic state.  

 

5.2 COMPUTATIONAL DETAILS 

The calculations have been performed using a plane-wave projector augmented wave 

method based code, VASP [261]. The generalized gradient approximation as 

proposed by Perdew, Burke and Ernzerhof [312] has been used for the exchange–

correlation potential. The convergence of binding energies with respect to the size o 

the supercell has been checked using three different sizes, viz., 5×5, 6×6 and 7×7 

containing 50, 72 and 98 carbon atoms for the case of 50% hydrogen coverage. The 

binding energy per atom changes by about 0.05 eV (a percentage change of 0.06%) in 

going from 5 × 5 to 7 × 7. Therefore we have chosen a 5 × 5 unit cell for the coverage 

up to 50% of hydrogen and 6 × 6 for the higher coverages. This choice is consistent 

with the one used by Lebègue et. al. [22]. In order to obtain adequate convergence in 

the density of states, we have carried out calculations on different k grids. It was 

found that at least 9 × 9 k grid was required during geometry optimization for an 

acceptable convergence. However, a minimum of 17 × 17 k grid was necessary for 
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obtaining an accurate DOS. The convergence criterion used for the total energy and 

the force are 10−5 eV and 0.005 eV/Å respectively. All the calculations have been 

performed on the chair conformer configuration where hydrogen atoms are attached 

to carbon atoms alternatively on opposite sides of the plane. This is known to be a 

lower energy configuration as compared to the boat conformer [20, 22].  

 

5.3 RESULTS AND DISCUSSIONS 

In order to decide the minimum energy positions for hydrogen atoms, following 

procedure has been adopted. Up to 20% coverage of hydrogen, we have carried out 

the geometry optimization for two different configurations of hydrogen atoms, first by 

placing the hydrogen atoms randomly and second by placing the hydrogen atoms 

contiguously, so as to form a compact cluster of hydrogenated carbon atoms. It turns 

out that, in all the cases, the configuration forming the compact cluster of the 

hydrogen atoms is energetically favored. In order to assess the relative stability of 

different patterns we have calculated six different patterns for 20% coverage case as 

shown in table 5.1. The binding energy of the most stable structure is the reference 

level. The more negative binding energy means more unstable structure. 

 

20% hydrogen coverage 

Configuration BE (total cell) eV 

Random placement of hydrogens -9.32 

Five hydrogen pairs placed separately -4.29 

Hydrogens placed along the diagonal of the cell -2.85 

Two clusters of seven and three hydrogens -2.15 

A single hydrogen isolated from a cluster of nine hydrogens -1.77 

One compact cluster   0.00 

 

Table 5.1 - Shifted binding energies (BE) for different configuration of 20% coverage 
(10H + 50C). The binding energy of the most stable structure is the reference (zero) 
level. The more negative binding means more unstable structure.  
 
We note that the compact cluster configuration is the lowest in energy and is lower by 

0.9 eV/H atom compared to the energy of the configuration with randomly placed 

hydrogen atoms. Thus our geometry optimization shows a preference for hydrogens to 
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decorate the graphene lattice in a contiguous and compact manner. In order to assess 

the validity of this process for the larger coverages and to understand the influence of 

different edge patterns like zigzag and armchair, we have considered seven different 

patterns for 50% coverage, as shown in figure 5.1.  

 

 
(a)  Randomly placed H           (b) Chain of bare carbons                                                         

 

   
         (c) 3 Separated islands             (d) Single cluster with Z-interface 

 

    
          (e)  A and Z mixture                         (f) Zigzag cluster 

 



5. Electronic structure of graphene and graphane 

 

105 
 

 
(g) A compact cluster 

 

Figure 5.1 – Different hydrogen decorations for 50% concentration. In the figure, 
yellow (lightly shaded in print) balls are bare carbon atoms, turquoise (darker shades 
in print) balls are hydrogenated carbons and red (small dark in print) balls are 
hydrogen atoms. 
 

These calculations have been carried out on a larger unit cell containing 98 atoms of 

carbon. Although a compact cluster configuration is energetically preferred one, there 

are different ways in which the hydrogens can be placed yielding a compact 

geometry. The seven cases considered are: 1- randomly distributed hydrogens (figure 

5.1-(a)), 2- a chain of bare carbon atoms (figure 5.1-(b)), 3- three separated clusters as 

shown in (figure 5.1-(c)), 4- a single cluster having zigzag interface and with one line 

of bare carbon atoms at the two side  edges (figure 5.1-(d)), 5- a mixture of armchair 

and zigzag pattern at the interface (figure 5.1-(e)), 6- a armchair pattern at the 

interface (figures 5.1-(f)) and 7- a zigzag pattern at the interface (figure 5.1-(g)). In 

the zigzag case each hexagonal ring at the edge has three hydrogenated carbons and 

three empty carbons. An armchair pattern consists of only two hydrogenated carbons 

at the edge. The binding energies for all these seven structures are compared in the 

table 5.2. Even among the islands, the ‘most compact’ one (having minimum surface 

area of covered hydrogens) has the highest binding energy. By the most compact, we 

mean an island of hydrogenated carbons which covers the minimum area. We have 

discussed more details about the zigzag and arm chair patterned configurations in 

section.  
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50% hydrogen coverage on 98 carbon cell 

Configuration BE (total cell) (eV) 

Random placement of hydrogens −23.29 

Chain of connecting bare carbon atoms −3.65 

Three separated islands  −3.25 

Zigzag interface with a line of bare carbon 

atoms at the two side edges  

−2.46 

Compact mixed (zigzag & armchair) interface  −1.66 

Compact armchair interface  −1.43 

Compact zigzag interface    0.0 

 

Table 5.2 - Shifted binding energies (BE) for different configuration of 50% coverage 
as shown in figure 4.1. The binding energy of the most stable structure is the 
reference (zero) level. The more negative binding energy means more unstable 
structure. 

 

The tendency to form the compact cluster can be understood by noting that the 

hydrogen atom placed on the top of a bare carbon atom pulls up the carbon atom 

above the plane by 0.33Å and deforms the surrounding lattice points also. Therefore it 

costs less energy to place an extra hydrogen atom nearest to the existing cluster, since 

the number of strained bonds are less compared to the case where the hydrogen atom 

is placed away from the cluster. In the latter case the entire neighborhood is deformed. 

Our results are consistent with the work of Hornekaer et. al. [303]  
 We have also carried out a similar analysis for the case of four hydrogen 

vacancies in graphane. The calculations for various configurations have been carried 

out with spin polarization. The calculated binding energies and the magnetic moments 

are tabulated in table 5.3. The four configurations considered are (1) four hydrogen 

atoms removed randomly, (2) three hydrogen atoms removed from one hexagon and 1 

from other, (3) two hydrogen atom pairs removed from different hexagons and (4) 

four hydrogens removed from a single hexagon (compact). We observe that the 

structure having a compact form of vacancies has the highest binding energy. The 

magnetic moment is about two for the lattice imbalance case. It is fruitful to recall 

Lieb’s theorem which states that for a bipartite lattice (one electron per site) the spin S 

of the ground state is ½ * (the lattice imbalance) [313]. The magnetic moment seen in 
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the case of random placement is just the sum of the isolated moments of hydrogen 

atoms, essentially a non-interacting case. 

 

92% hydrogen coverage (4 vacancies ) 

Configuration BE (total cell) Magnetic Moment 

Random   −5.50 4.0 

3H on one hexagon and 1on 

other 

-2.09 1.82 

2H pairs placed on 

different hexagons 

−0.11 nil 

Compact single island 0.0 nil 

 

Table 5.3 - Shifted binding energies (BE) (eV) and the magnetic moments (µB) of 
four hydrogen vacancies. The binding energy of the most stable structure is the 
reference (zero) level. The more negative binding energy means more unstable 
structure.  
 

Now we discuss the total DOS for different hydrogen coverages which are shown in 

figures 5.2 and 5.3. All the DOS are for the non-spin polarized cases. The geometry 

used is for the minimum energy configuration (compact cluster of hydrogen atoms). 

In both the figures the plots are shown in a restricted region to enhance the clarity 

near the Fermi energy. The effect of addition of a small concentration of hydrogen in 

the V-shape DOS near Ef can be seen from figures 5.2-(b) to (d). It can be noted that 

the characteristic V-shape valley seen in figure 5.2-(a) is due to peculiar sp2 bonded 

carbon atoms in graphene, and the producing the deformation in the DOS. Thus in this 

region, the addition of hydrogen atoms immediately distorts the symmetry DOS is 

modified by additional localized σ-pz bonds between the hydrogen and carbon.  
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(a)                     (b) 

 

            
(c)                     (d) 

 

        
(e)                     (f) 

    
(g)                     (h) 
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(i)                      (j) 

 

Figure 5.2 - The total DOS for hydrogenated graphene for various hydrogen 
concentrations below 90%. The zero of the energy is taken at the Fermi level and is 
marked by a vertical line. X axis denotes E − Ef.  (a) Graphene; (b) 4% hydrogen; (c) 
16% hydrogen; (d) 20% hydrogen; (e) 30% hydrogen; (f) 50% hydrogen; (g) 60% 
hydrogen; (h) 70% hydrogen; (i) 80% hydrogen; (j) 85% hydrogen. 
 

As the hydrogen coverage increases there is a significant increase in the value 

of DOS at the Fermi level. The process of hydrogenation is accompanied by the 

change in the geometry. The hydrogenated carbon atoms are now moved out of the 

graphene plane, in turn the lattice is distorted and the symmetry is broken. As a 

consequence, more and more k points in the Brillouin zone contribute to the DOS 

near Fermi level, the increase being rather sharp after 20% coverage. The region 

ranging from 30% coverage to about 60% coverage is characterized by the finite DOS 

of the order of 2.5 eV−1 near the Fermi energy. As we shall discuss this region can be 

described as having metallic character with delocalized charge density. 

 Now we complete the discussion of DOS by presenting the cases of hydrogen 

coverages greater than 90%. In figure 5.3 we show the density of states obtained by 

the removal of one–four hydrogen atoms in a unit cell containing fifty carbon atoms. 

Clearly one and three hydrogen vacancies (i.e. 98% hydrogen and 94% hydrogen 

respectively) induce states on the Fermi level while two and four hydrogen vacancies 

(i.e. 96% hydrogen and 92% hydrogen respectively) do not induce any state at the 

Fermi level (see the discussion of hydrogen imbalance later). For a small number of 

vacancies these are π bonded states localized on bare carbon atoms. 
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(a)                     (b) 

 

     
(c)                     (d) 

 

 
(e) 

 

Figure 5.3 - The total DOS for hydrogenated graphene for various hydrogen 
concentrations above 90%. The zero of the energy is taken at the Fermi level and is 
marked by a vertical line. X axis denotes E − Ef. (a) 92% hydrogen; (b) 94% 
hydrogen; (c) 96% hydrogen; (d) 98% hydrogen; (e) graphane 
 

In summary, it is possible to discern, rather broadly, three regions of hydrogen 

coverage. A low concentration region, where the DOS undergo the distortions due to 
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loss of lattice symmetry of the system, intermediate concentration region where a 

metallic-like phase is seen and a very high concentration region where most of the 

carbon atoms are hydrogenated and vacancy gives rise to midgap states. As discussed 

before, our calculations show the presence of localized states in the DOS for very low 

hydrogen coverage as well as for very high hydrogen coverage (midgap states). These 

DOS show a pattern of peak or a valley at Ef (in case of low coverage) and at the 

centre of the gap (in case of high coverage). The reasons can be attributed to the 

existence of sublattice imbalance. If the difference of hydrogen atoms on the two 

sides of the sheet is odd then it leads to a peak. Hence by adding impurities one by 

one to graphane we get a sequence of midgap states. This is in consistent with the 

work of Casolo et.al. [24] Interestingly this feature is also retained for the 

intermediate coverages of hydrogen (where we get a finite DOS at the Fermi level) 

when the sublattice imbalance of hydrogen is one, e.g., in figures 5.2- (e)–(g), we see 

the peaks at Fermi level. As we shall see in section 5.3.1 this feature has an 

implication for the magnetic behavior of the system. 

 In order to bring out the difference between the local electronic structure of 

the bare carbon atoms and the hydrogenated carbon atoms, we have analyzed the site 

projected DOS for all the cases. In figure 5.4, we show site projected DOS for 40% 

hydrogen coverage depicting the contributions from a hydrogenated carbon site and a 

bare carbon site. Quite clearly, the contribution around the Fermi level comes from 

the pz orbitals of bare carbon atoms only. This is a general feature for all the systems 

investigated. It may be emphasized that in pure graphene all the carbon atoms 

contribute to a single k point (Dirac point). In contrast to this, upon hydrogenation, 

only bare carbon atoms contribute to the DOS at Fermi energy, and they do so at 

many k points of the Brillouin zone. As the concentration increases further (above 

80%), there are too few bare carbon atoms available for the formation of delocalized π 

bonds. The value of DOS approaches zero and a gap is established with a few midgap 

states. 
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Figure 5.4 - Site projected DOS for hydrogenated carbon sites (dotted line) and bare 
carbon sites (continuous line) for hydrogen coverage of 40%. Almost all the 
contribution comes from the pz which has been shown in the figure. Note that only 
bare carbon atoms contribute to the DOS at the Fermi level. 
 

The evolution towards the metallic state can be better appreciated by examining the 

variation in the value of DOS at the Fermi level which is shown in figure 5.5. A clear 

rise in DOS is seen after 20% hydrogen concentration peaking around 3.5 eV at 50% 

concentration. This rise is due to the increasing number of k points contributing to the 

Fermi level, as inferred from the analysis of the individual bands. Evidently, over a 

significant range of concentration, the value at Fermi level is more than 2 eV−1. The 

decline seen after 60% is because of the reduction in the number of bare carbon 

atoms. The character of the DOS changes after about 80%. The value of the DOS at 

the Fermi level oscillates between zero and some finite value. It is most convenient to 

describe this region as graphane with defects by the removal of a few hydrogen atoms 

giving rise to midgap states. The nature and the placement of the induced states is 

dependent on the number of hydrogen atoms removed. 
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Figure 5.5 - Variation of the value of DOS at the Fermi level as a function of 
hydrogen coverage. 
 

It may be emphasized that the presence of states around the Fermi level giving finite 

DOS does not guarantee that the system is metallic unless we examine the nature of 

localization of the individual states. Therefore we have examined the energy resolved 

charge densities of the states near the Fermi level and the electron localization 

function (ELF). The energy resolved charge densities are obtained by summing the 

charge densities of all the k points contributing in the small energy region near Ef. 

Therefore, the charge densities shown in figure 5.6 for different hydrogen coverages 

specifically bring out the nature of the states near Ef. A particularly striking feature is 

the formation of two spatially separated regions as seen in figures 5.6-(e) and (f). The 

hydrogenated regions hardly contribute to the charge density giving rise to the 

insulating regions surrounded by the π bonded bare carbon atoms forming conducting 

regions. This feature is also seen for the higher concentrations up to 70%. It may be 

emphasized that the topology in this range of concentrations (30%–70%) shares a 

common feature namely, there is a contiguous region formed by the bare carbon 

atoms.  



5. Electronic structure of graphene and graphane 

 

114 
 

     
(a) Graphene     (b) 8%H  

 

            

(c) 16%H    (d) 20%H 

 

       
(e) 40% H    (f) 50% H 
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(g) 70% H    (i) 92% H 

 

Figure 5.6 – Isosurfaces of charge densities of bands near the Fermi level. For 
comparison, the charge density of graphene at the Dirac point is also shown. (a) 
Graphene; (b) 8% hydrogen; (c) 16% hydrogen; (d) 20% hydrogen (e)40% hydrogen 
(f) 50% hydrogen (g) 70% hydrogen and (i) 92% hydrogen 
 

It may be pointed out that the contiguous charge density is attributed to the favored 

configuration of compact cluster formation5. The change in the character of the state 

at 90% and above is also evident in figure 5.6-(i). There are insufficient number of 

bare carbon atoms to form contiguous regions. As a consequence, these carbon atoms 

form localized bonds giving rise to midgap states noted earlier. 

The degree of delocalization of an electron of the system can be understood by 

examining the electron localization function (ELF) the details of which are given in 

Chapter 2. We have examined the isosurfaces of ELF for various values between 0.5 

and 1.0. The isosurface for a typical value 0.75 is shown in figure 5.7-(a) for 70% 

coverage. It can be seen that for this high value isosurface exists mainly along 

carbon–hydrogen bonds (σ-pz). The existence of localized σ bonds between the bare 

carbon atoms can also be noticed. In figure 5.7-(b) we show the isosurface for the 

value of 0.62. The figure shows a continuous surface covering all the bare carbon 

atoms. This signifies the delocalized nature of the charge density arising out of π 

bonds formed by pz orbitals. We have analyzed the ELF for all the coverages. The 

above features are seen for the coverages from 30% to 80%. Thus the analysis of ELF 

confirms the delocalized nature of the charge density near the Fermi level for the 

concentration from 30% to 80%. 
                                                           
5 It is our conjecture, based on results of classical bond percolation on 2D hexagonal lattice, 
that below hydrogen concentration of 61.5% (randomly distributed), the bare carbon atoms 
will form continuous chains. However, we have not carried out any calculations to verify this. 
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Figure 5.7 - ELF plots with two different isosurface values for 70% hydrogen 
concentration. (a)  shows for isosurface value 0.75 and (b) shows for isosurface 
value 0.62. 

 

5.3.1 Magnetism 

The existence of a peak at Fermi level in the non-spin polarized calculation is an 

indication of Stoner instability that may lead to a more stable spin-polarized solution. 

As an example we have analyzed the case of 50% hydrogen coverage which shows a 

peak in the DOS at the Fermi level. When we allow spin polarization in our 

calculations, indeed we find a stable ferromagnetic solution, e.g., for 50% hydrogen 

coverage we get a total magnetic moment ∼1µB per unit cell as reflected in the spin 

density plot shown in figure 5.8-(a). However, the exchange splitting seen on the bare 

carbon atoms is rather small and is expected to survive only at a very low 

temperature. This fragile nature of magnetism is clearly indicated by the collapse of 

magnetic moment with a smearing width of 0.08 eV. The site projected DOS for two 

bare carbon atoms belonging to two different sublattices along with the spin density 

plots are shown in figures 5.8-(c) and 5.8-(d). Carbon atom belonging to one 

sublattice shows a spin-polarized behavior whereas the other sublattice shows a spin-

polarized behavior whereas the other sublattice carbon atom has an energy gap in the 

electronic spectrum. This sublattice effect is similar to what is observed in case of 

graphene nanoribbons [314]. 
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Figure 5.8 – (a) Spin density (b) 
for two bare carbon atoms from two different sublattices
E − Ef. This figure is for 50% hydrogen coverage
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(a)                              (b) 

(c)                     

(a) Spin density (b) total DOS (c) and (d) site projected (p
for two bare carbon atoms from two different sublattices. X axis of the plots denotes 

. This figure is for 50% hydrogen coverage. 

Tuning the electronic structure with hydrogenation

Now we bring in another interesting aspect of hydrogenation brought out by our 

calculations. Our results indicate that it is possible to pattern the graphene lattice with 

tune the electronic structure. In figure 5.9-(a), the patterning is

removing the hydrogen atoms along the diagonal of the unit cell where as in figure 

b) the hydrogen atoms are removed parallel to one edge of the unit cell. The 

ern is more stable than the diagonal pattern by 0.04 eV/H

corresponding DOS are shown in figure 5.9-(c) where a dramatic difference is seen. 
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total DOS (c) and (d) site projected (pz only) DOS 
axis of the plots denotes 

Tuning the electronic structure with hydrogenation 

brought out by our 

is possible to pattern the graphene lattice with 

a), the patterning is done by 

the unit cell where as in figure 

removed parallel to one edge of the unit cell. The 

ern is more stable than the diagonal pattern by 0.04 eV/H atom. The 

a dramatic difference is seen.  
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(a)                                   (b) 

 
      (c) 

 

Figure 5.9- Decoration of hydrogen (a) along the diagonal of the unit cell and (b) 
along the edge of the unit cell. The yellow atoms are the bare carbon atoms. (c) DOS 
plots for the two cases. The lone atoms seen are from repeating super cells. 

 

The diagonal pattern shows a clear bandgap of 1.4 eV whereas the horizontal pattern 

shows finite DOS along with a magnetic solution. A close inspection of the geometry 

reveals an analogy with graphene nanoribbons (GNR). The diagonal pattern 
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resembles an armchair GNR with a chain of hexagons while the horizontal pattern is 

analogous to a zigzag GNR with a width of three rows in this particular case. The 

corresponding DOS also resemble the electronic structure of an armchair (zigzag) 

GNR with a semiconducting (metallic) nature [315]. It is a reasonable conjecture that 

the bandgaps of the patterned system can be tuned by controlling the width of the bare 

carbon channels analogous to the case of armchair GNR where the band gap 

decreases as the width of GNR is increased. 

We emphasize that the hydrogenated systems chosen in this work are such that 

the energy is always minimum. These are the naturally preferred arrangements of the 

hydrogen atoms on graphene. However, it is interesting to note that the designed 

patterns can yield band gaps, magnetic and non-magnetic patterns as discussed in an 

illustration above. A good deal of work has been carried out on the subject after the 

publication of this work. Magnetic impurities (single and double Fe atoms) placed in 

graphene with dehydrogenated channels (armchair and zigzag) are studied via DFT by 

Haldar et.al. [316]. The calculations are performed on 3 different channel widths. 

Their results show that it is possible to stabilize Fe along the channels of bare carbon 

atoms, giving rise to a magnetic insulator or a spin gapless semiconductor. The 

chemical reactivity of the pristine and lithium doped monolayer and bilayer graphene is 

studied using periodic DFT by Dennis [317]. The results demonstrate that lithium 

doping can dramatically increase the reactivity of graphene to such an extent that 

chemical groups that do not react with graphene become bonded when lithium is 

underneath. Havu et.al. demonstrate that that in order to hydrogenate graphene on 

SiO2 substrate with different surface termination, it is beneficial to oxygenize the 

surface and saturate it with hydrogen [318]. A current article discusses the graphene 

functionalization via hydrogenation in details [319]. 

 

5.4 SUMMARY AND CONCLUSIONS 

In conclusion, our detailed density functional investigations have revealed some novel 

features of graphene graphane metal–insulator transition. As the hydrogen coverage 

increases, graphene with a semi-metallic character turns first into a metal and then to 

an insulator. Hydrogenation of graphene pulls the carbon atom out of the plane 

breaking the symmetry of pure graphene. As a consequence, many k points in the 

Brillouin zone contribute to the DOS at the Fermi level giving rise to a metallic 
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system. The metallic phase has some unusual characteristics: the sheet shows two 

distinct regions, a conducting region formed by bare carbon atoms and embedded into 

this region are the non-conducting islands formed by the hydrogenated carbon atoms. 

The onslaught of insulating state occurs when there are insufficient numbers of bare 

carbon atoms to form connecting channels. This also means that the transition to 

insulating phase depends on the distribution of hydrogen atoms and will occur when 

the continuous channels are absent. The present work opens up the possibility of using 

partially hydrogenated graphene having designed patterns of conducting channels 

along with insulating barriers for the purpose of devices. Our results also show that it 

is possible to design a pattern of hydrogenation so as to yield a semiconducting sheet 

with a bandgap much lower than that of graphane. Finally we may note that the 

calculation of conductivity in such a disordered system is a complex issue. The 

present study focuses on the evolution of the density of states to understand the 

change in the character of single particle orbitals as a function of hydrogen coverage. 

An obvious extension of this work is the study of transport properties to have a more 

vivid picture. We believe that in near future, there will be exploding activity leading 

to graphene based materials. 
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6. Electronic structure of GNR and 
H-GNR encapsulated in SWNT  

6.1 INTRODUCTION 

Encapsulating single walled carbon nanotubes (SWNT) with nano materials such as 

clusters, [108, 126] linear chains of carbon [140, 145] and cages like fullerene [125, 

139] have attracted considerable attention of experimentalists as well as theoreticians. 

The goal is to use one dimensional nature and the hollow space to create new 

materials. Indeed a variety of nano structures such as water molecules, [135, 320, 321, 

322] liquid gallium, [323] polymeric nitrogen, [324] clusters of aluminum, [325] 

chains of metal nanowires [326] as well as chains of carbon atoms [142, 144] etc. 

have been investigated, some experimentally and many via simulations. A class of 

novel carbon based materials of intense current interest is graphene nanoribbons 

(GNR), [61] being investigated mainly due to their perceived immense potential for a 

variety of device applications. Properties of GNR can be tuned by modifying the 

width and geometry which opens up a possibility of using these in electronic devices. 

Until recently, the question of filling nanotubes with such GNR was not successfully 

addressed. Very recently two experimental groups [12, 92] demonstrated the synthesis 

of such a new material i.e, GNR inside nanotubes. Both the groups have used a novel 

idea of using the confined space in the nanotubes as a reactor for synthesizing the 

GNR. Their results indicate that the GNR are energetically stable inside the tube, 

show twists and can have helical shapes. Interestingly, the preliminary calculations by 

Talyzin et.al. [12] show that the electronic structure can be approximately considered 

as a superposition of that of bare nanotubes and free standing GNR. Quite clearly this 

property is of considerable interest for practical applications. The width of hydrogen 

terminated GNR formed in their experiment and also investigated using density 

functional theory (DFT) is 3 hexagons.  

In the present work we have carried out detailed electronic structure 

calculations on carbon nanotubes encapsulated by the smallest GNR (partially as well 

as fully hydrogenated) using DFT. In addition to the references noted above there are 

two reports on the electronic structure of graphene strips inside nanotubes. Liu et.al. 

[140] have examined the geometries of graphene strip in the SWNT having diameter 
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smaller than 9.5Å which corresponds to (n,m)=(7,7). They have also investigated the 

geometries of finite size carbon chains upto 6 atoms. Their calculations predict that 

GNR with single hexagon width cannot be inserted in the tubes with diameters less 

than 12 Å. However, as pointed out by Talyzin et al. these helices are formed in rather 

different way than seen in the experiments.  

Indeed, the GNR in CNT is a fascinating area and there are number of reports 

published recently (after our work). Chamberlain et.al. discuss the structure and 

stability of sulphur terminated GNR in CNT of different diameters [327]. The 

encapsulated S-GNR exhibit diverse dynamic behavior, including rotation, 

translation, and helical twisting inside the nanotube, which offers a mechanism for 

control of the electronic properties of the graphene nanoribbon via confinement at the 

nanoscale. In another work, dispersion-corrected density functional theory (DFT-D) is 

applied for investigation of structure and electronic properties of chiral GNR inside 

CNT [328]. Xie and co-workers investigate the atomic structures, Raman 

spectroscopic and electrical transport properties of individual graphene nanoribbons 

of widths 10–30 nm derived from sonochemical unzipping of multiwalled carbon 

nanotubes [329]. Few interesting classical calculations on GNR are worth noting. MD 

simulations by Jiang et.al. on nanoribbons in SWNT [330] show formation of helical 

structures. In their study the GNR inserted are of the order of 500Å long and the 

emphasis is on insertion dynamics. Another work by Li’s group, predict that the 

graphene nanoribbon (GNR) can be helically wrapped onto and insert into the single-

walled carbon nanotube (SWNT) to form helical configurations which are close to 

helices found in nature [331]. Two GNRs would form a DNA-like double-helix with 

the same handedness. The dependence of the diameter and chirality of SWNT and the 

width of GNR in the helix-forming process are investigated. 

 

6.2 COMPUTATIONAL DETAILS 

All the calculations have been performed within the Kohn-Sham formulation of DFT 

using Perdew, Burke and Ernzerhof (PBE) [312] scheme of generalized gradient 

approximations using projector augmented wave (PAW) method as implemented in 

VASP package with the energy cut-off 400eV. The size of the box along x and y is 

large enough to avoid the interactions. Typically 10Å distance is maintained on each 

side of the tube along x and y direction. The pure GNR consists of 20 carbon atoms 
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while hydrogenated GNR has additional 20 hydrogen atoms. The length of the 

ribbons is approximately 12.5Å. The lengths of all the nanotubes are adjusted to 

match this length by constructing a large unit cell. The whole system is considered to 

be periodic. We have used the metallic and semiconducting SWNT with parameters 

(n,m) as : (10,0),(17,0),(22,0) and (6,6),(10,10),(13,13) corresponding to diameters 

ranging from 8Å to 17Å. During the optimization all the atoms are allowed to relax, 

the total number in the largest system being 304. The corresponding supercell units 

along z axis are 5 and 3 times that of unit cell for metallic and semiconducting tubes 

respectively. We have used 1×1×7 k-mesh for optimization and 1×1×27 for self-

consistent calculations.  

The relative stabilities of the ribbons are determined by calculating the binding 

energy (BE) which is defined as 

 *ú';û ��*�m�@t�¶wÈüñw�
 
� �*�m�@t�¶wÈ
 � *�m�@t�ñw�
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Where Etotal (GNR@CNT) is the total energy of the CNT with the GNR inside it. The 

negative value of Ebind indicates more binding to the tube and the structure is stable. 

 

6.3 RESULTS AND DISCUSSIONS  

 
6.3.1 Pure GNR inside CNT 
 
We will begin the discussion by presenting the geometries, the density of states 

(DOS) and the partial charge densities of pure GNR. The free standing GNR 

containing 20 atoms, shown in figure 6.1-(a) is approximately 12.5Å long. We will 

mainly present the results for the metallic nanotubes and bring up the contrast 

between the metallic and semiconducting tubes wherever necessary. We have used 

CNT with 3 different diameters for metallic and semiconducting tubes which are 

given in table 6.1. For convenience, we shall henceforth refer these as M1, M2 and 

M3 – metallic CNT and S1, S2 and S3 - semiconducting CNT. 
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Diameters (Å) CNT short forms Diameters (Å) CNT short forms 

8.14 M1 7.83 S1 

12.20 M2 13.31 S2 

17.63 M3 17.21 S3 

 

Table 6.1 – CNT of different diameters used and their short forms. 

 

In figure 6.1-(b) to figure 6.1-(d) we show optimized geometries of GNR inside the 

tubes with given diameters.  

         
       (a)  Free standing GNR                             (b) GNR in M1  

                      
                  (c) GNR in M2                                           (d) GNR in M3 

 

Figure 6.1 - Free standing and optimized geometries of graphene ribbons in the 
metallic CNT. (a) Original GNR (b) Ring structure having 8 atoms is seen to sustain 
in the smallest tube. (c) Formation of a single oval shape is seen in larger diameter. 
(d) Well separated, curved 1-d chains in the largest tube are not placed 
symmetrically with respect to the axis. The average distance between the chains is 
3.8Å. 
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The remarkable feature observed is the tendency to break the vertical bonds with 

increasing diameter, leading to two separate chains in the largest diameter (M3) 

considered. The rings (although with 8 members) are retained in the smallest tube 

(M1) because of the confinement where the shortest distance between the GNR and 

the wall is about 3.46Å. The formation of an interesting oval shape structure seen in 

the larger tube (M2) indicates that such quasi one dimensional shape is sensitive to the 

degree of confinement. The two separated chains which is the stable structure in the 

largest diameter CNT (figure 6.1-(d)), are curved. The GNR inside the 

semiconducting tubes of similar diameters have similar geometries as shown in figure 

6.2.  

                     
(a) GNR in S1   (b) GNR in S3 

 
Figure 6.2 - Optimized geometries of graphene ribbons in the semiconducting 
smallest and largest CNT. (a) Ring structure is having 12 atoms in the smallest tube. 
(b) Well separated, almost linear 1-d chains in the largest tube indicate that the 
degree of confinement plays important role in determining the geometry. The 
average distance between the chains is 3.8Å 
 

However there are subtle variations in the structures retaining the overall pattern. For 

example the chains in the largest diameter (S3) are parallel and not curved. In this 

case the interaction between the ribbon and the walls is somewhat weaker than in the 

metallic case. We expect such a structure to appear for larger diameters for the 

metallic tubes. Notwithstanding these differences the nature of the tubes (metallic or 

semiconducting) is less relevant, physical confinement is more decisive. In free space 

the GNR are known to show spontaneous instabilities leading to twists [332]. 

Interestingly for the smallest GNR considered here, the sp2 bonds are broken and 

formation of sigma bonds (px orbitals) stabilizes the linear structure.  
Next, we examine the electronic structure via density of states and the relevant 

partial charge densities near Fermi level, which are shown in figure 6.3 and 6.4 for the 
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metallic tubes. The DOS of the bare tubes are also shown for the reference. The 

nature of the electronic states near the Fermi level can be analyzed by summing the 

charge densities of all the states near the Fermi level in the narrow energy range of 

0.1eV. Isosurfaces for such partial charge densities are also shown in figures. As seen 

from figures, there is a substantial enhancement in the DOS at Fermi energy (Ef ) in 

all the cases. In the smallest tube (M1), it is evident from figure 6.3-(b) that the 

contribution at the Fermi energy is mainly due to the carbon atoms located near the 

end of GNR and does not show a clear delocalized character over the entire length. In 

figure 6.3-(c), we have also shown the isosurfaces near the prefermi peak observed in 

DOS at about 0.3eV lower then Fermi level. Indeed this contribution too comes from 

all the carbons atoms of GNR. We note that the vertical pz overlap is an additional 

contribution which was absent at Fermi level.  

 

 
(a) 

 

       
         (b)      (c)                                                                          

 
 
Figure 6.3 – (a) Total DOS for pure GNR in metallic tube S1. The zero of the energy 
is taken at the Fermi level and is marked by a vertical line. X axis denotes E −Ef .The 
DOS for pure tubes are also shown for reference. (b) Corresponding isosurfaces of 
charge densities at 1/10th of the maximum value. These are the charge densities of 
the states very close to the Fermi level. At this value the contribution from tube 
carbon atoms is negligible. The enhancement seen at Fermi is purely from the end-
carbon atoms of GNR as shown. (c) The contribution to the prefermi peak is from all 
the carbons atoms of GNR. 
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(a)                                               (b) 

 

                                                  
 

(c)                                             (d) 
 
Figure 6.4 – (a) Total DOS and (b) Corresponding isosurfaces of charge densities 
(close to Fermi) at 1/10th of the maximum value in metallic CNT M2. Carbons atoms 
from one side of the oval GNR contribute more than the other. This contribution is 
seen in DOS at Fermi. (c) DOS and (d) Isosurfaces of charge densities (close to 
Fermi) at 1/10th of the maximum value for M3. There is a clear enhancement seen at 
Fermi level retaining the nature of tube DOS. Chain A being close to the wall 
contributes more than other chain. 

 
 

In the larger tube (M2), (figure 6.4-(a) and (b)) the contribution from one side of the 

ring is more than the other because of the asymmetric placement of the ring. In case 

of the largest diameter CNT (M3) the enhancement at Ef  is definitely due to the states 

from the chain atoms only (figure 6.4-(c) and (d)). The evolution of geometries 

towards one dimensional structure is clearly reflected in DOS. The DOS evolve from 

having a peak near Fermi level to a flat one similar to that of pure tube. The curved 

chains in the largest tube show completely delocalized charge density as depicted in 

figure 6.4-(d). Quite clearly, the delocalized states are formed by π bonded pz orbitals 
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sitting on carbon atoms of the ribbon. It may be recalled that the two chains are not 

symmetrically placed with respect to the tube axis. The chain marked A is closer to 

the wall and contributes dominantly at the Fermi level while the second one 

contributes just below the Fermi energy. Thus our calculations bring out the 

possibility of forming stable 1-d conductor inside metallic CNT. 

The overall pattern of DOS in semiconducting case is very similar to metallic 

tubes except that the states due to ribbons appear inside the gap. We show two 

representative cases for CNT S1 and S2 in figure 6.5 and 6.6. We note that the 

additional states appearing in the gap are from the ribbon. Similar picture is observed 

in these cases that is, contribution to Fermi level is from GNR atoms. For S2, the 

partial charge density is calculated for the prefermi peak also and is shown in figure 

6.6-(c). It is interesting to note that this peak is due to the carbon atoms of the tube 

only. The GNR atoms only contribute at Fermi level (figure 6.6-(b). In S1, such peak 

is observed well below Fermi level at about 1eV. For the largest CNT S3, the two 

parallel chains formed give rise to the additional states appearing in the gap (figure 

6.7).  

 

    
(a)                                               (b) 

 

Figure 6.5 – (a) Total DOS for pure GNR in S1.The zero of the energy is taken at the 
Fermi level and is marked by a vertical line. X axis denotes E −Ef .The DOS for pure 
tube is also shown for reference. The states occurring at Fermi level are due to the 
GNR atoms. (b) Corresponding isosurfaces of charge densities (close to Fermi) at 
1/10th of the maximum value. 
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(a) 
 

          
 

(b)                                         (c) 
 

Figure 6.6 – (a) Total DOS for S2. The zero of the energy is taken at the Fermi level 
and is marked by a vertical line. X axis denotes E −Ef .The DOS for pure tube is also 
shown for reference (red color).The states seen at Fermi are due to GNR atoms only. 
(b) Corresponding isosurfaces of charge densities (close to Fermi) at 1/10th of the 
maximum value. (c) Isosurfaces near the prefermi peak depicting contribution only 
from the CNT atoms. 
 

 

 
 

Figure 6.7 – Total DOS for GNR in S3. The corresponding geometry is same as 
shown in figure 6.2-(b), i.e two parallel chains. The GNR atoms contribute to Fermi 
giving the midgap states.  
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Next, our analysis of site projected DOS for all the subsystems reveals that the 

states appearing at Fermi level are prominently from that of the carbon atoms of 

GNR. A representative site projected DOS for GNR in S1 are shown in figure 6.8. For 

the purpose of clarity, the DOS are shown for central and end carbon atoms for 

angular momentum projections py and pz. The dominant contribution to the peak 

below Fermi level comes from the sigma bonds formed out of py orbitals of (along the 

bond) carbon atoms of GNR. The contribution from both py and pz of GNR carbons is 

seen on the Fermi level as shown in figure 6.8. The enhanced DOS at the Ef for this 

case does not necessarily indicate the existence of conducting channel through GNR. 

  

 

 
Figure 6.8 - Site projected DOS for graphene nanoribbon in the S1. The prominent 
contribution towards the peak before Fermi level is from the from the end carbon 
atoms of the ribbon. 

 
Thus our calculations bring out the possibility of forming stable 1-d conductor inside 

metallic or semiconducting shell by adjusting the diameter and the width to explore 

exotic physics of chains and rings experimentally. Recent work by Zeng et.al. [333] 

shows that such carbon chains can act as perfect spin filters and spin valves. 
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6.3.2  50%H GNR inside CNT 
 
Next we turn to the case of encapsulation of hydrogenated GNR. It is known that 

hydrogenation of graphene changes its geometry as well as the electronic structure, 

and the change is dependent on the degree of hydrogenation [20, 21]. Therefore it is 

of considerable interest to investigate the optimized geometries of 50% hydrogenated 

GNR as well as fully hydrogenated GNR. We have used two configurations for the 

placement of hydrogen for the 50% case: systematic and random. In the first case 20 

atom GNR is decorated with 50% hydrogens in a systematic manner as shown in 

figure 6.9-(a). Each hexagon of the ribbon is decorated with two hydrogens placed on 

the opposite carbon atoms, one on the top and the other on the bottom side, the 

graphane way. We shall refer to this structure as SH. In the second type of 

configuration, the hydrogens are placed randomly on the GNR keeping the same 

number of hydrogens on the top and bottom as shown in figure 6.9-(b). This will be 

referred as RH. Strikingly, for SH all the hydrogens go over to in-plane positions and 

resulting geometries are independent of the diameter considered (figure 6.9-(c)). The 

structure is planer leading to hydrogen terminated GNR. This is what has been 

observed in the experiment [12] in the sense that the in-plane terminated nanoribbons 

are energetically stable inside the CNT. A point to note is that GNR used in their 

work are 3 hexagons wide while our work is on a single width GNR. Thus even the 

smallest GNR (if terminated by hydrogen) having single hexagon width can be 

stabilized in the nanotube. As expected the electronic structure of this system can be 

viewed as a superposition of electronic structure of sub systems (figure 6.10). The 

examination of geometries in the semiconducting CNT shows no significant 

difference when compared with the metallic ones.  

The story is different for randomly placed hydrogenated ribbon (RH). The RH 

geometries show significant diameter dependent features. The geometries are closer to 

those of pure GNR except for severe distortions due to hydrogen attachment as shown 

in figure 6.9-(d). The tendency to form parallel chains by breaking the intermediate 

bonds in large diameter tubes also persists (figure 6.9- (e)), however structures are 

modulated by strong C-H bond leading to displacements of carbons away from planer 

or linear shape. Quite clearly, the placement of hydrogens plays an important role in 

determining the shapes of the ribbons inside.  
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(a)                                               (b) 

 

 
                   (c) 

 

            
            (d)                                                   (e) 

 
Figure 6.9 - Original geometries for 50%H-GNR – (a) Systematic and (b) random 
placement in CNT. (c) The SH structure becomes planer after optimization in all CNT 
(d) RH forms some intermediate shapes in the smaller diameter CNT (e) separated 
chains in the largest CNT. Note the effect of attached hydrogens leading to 
distortions. 
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Figure 6.10 - Superimposed DOS for 50%H systematic placement. The zero of the 
energy is taken at the Fermi level and is marked by a vertical line. X axis denotes E 
−Ef 
 
 

6.3.3 Fully hydrogenated GNR (H-GNR) 

Now we present the results for fully hydrogenated GNR. Remarkably the optimized 

geometries are not sensitive to the diameter at all. The final structure remains the 

same, namely two parallel chains in all types of CNT (figure 6.11-(b)). A comparison 

with the geometries of pure GNR (figure 6.1) reveals some noteworthy differences. In 

the present case the carbon atoms show zigzag arrangement, as each atom is pulled by 

the attached hydrogen. The two chains are symmetrically placed with respect to the 

tube axis due to stronger confinement. It is interesting to look at the DOS for both 

types of tubes (figure 6.11-(c) and figure 6.11-(d)) which show enhancement at Ef 

similar to the DOS for pure GNR in the largest tube in spite of the structures being 

different. In figure 6.11-(e) and (f) we show isosurfaces of partial charges densities in 

which the overlap of pz orbitals leading to delocalized charge density along the two 

chains is evident. The contribution of both the chains is equal unlike in the case of 

pure GNR. It is interesting to note that there are two stable conducting channels 

available inside CNT.  
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                               (a)                                                              (b) 

                                              

 

                                 (c)                                                              (d) 

            
                         (e)                                                         (f) 
Figure 6.11 – (a) Original H-GNR consisting of 20 carbon and 20 hydrogen atoms. 
(b) Optimized geometry is same in all CNT, namely parallel stripes with the 
separation distance varying from 2.58Å to 4Å as the diameter is varied (c) and (d) 
DOS of H-GNR in a metallic tube and semiconducting tube resp. showing added 
states at Fermi. (e) Partial charge density shown for semiconducting CNT. The 
delocalized nature is evident and is observed for H-GNR in all CNT. (f) Close view of 
the bonding in H-GNR. 
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We have also calculated the binding energies (BE) for all GNR and the results are 

tabulated in table 6.2. It turns out that the GNR are stable inside all the tubes. The 

range of BE/atom for metallic cases is -0.14 eV to -0.06 eV while for semiconducting 

it is -0.09 eV to -0.03 eV, indicating that the binding is relatively stronger for metallic 

CNT. There is a decreasing trend in BE/atom as diameter is increased. Our results for 

BE of GNR are complimentary to those of Liu et.al. [143] who have considered such 

a 20 atom stripe in CNT upto diameter of 9.5Å. Few variations observed are due to 

the difference in large cutoff and large number of k-points used for optimization. 

 

Metallic Semiconducting 
 

Diameter GNR H-GNR Diameter  GNR  H-GNR 
8.14 -0.14 -0.12 7.83 -0.09 -0.07 
12.20 -0.09 -0.13 13.31 -0.07 -0.09 
17.63 -0.06 -0.08 17.21 -0.06 -0.03 
 

Table 6.2 - Binding energies for GNR and H-GNR in different nanotubes 

 

6.4 SUMMARY AND CONCLUSIONS 

Finally we note that our results for GNR having one hexagon width compliment DFT 

results reported in early work [18]. They are also complimentary to the work by 

Liu.et.al.[143] where the nanotube diameters were limited to less than 8Å and taken 

together bring out many interesting features. The geometries of pure GNR change 

drastically inside the nanotubes having diameters more than 8Å. In the large tubes it 

can lead to two conducting chains. Our work also reveals the crucial role of in-plane 

hydrogen termination in stabilizing GNR. Even the smallest possible GNR is seen to 

be stable inside tubes having sufficiently large diameter. In fact the optimized 

geometries turn out to be sensitive to the degree of hydrogen coverage. Fully 

hydrogenated GNR separate into two one dimensional conducting chains, at least for 

small width case. The nature of the tube (metallic or semiconducting) does not play 

any significant role in determining the geometry. The possibility of tuning the 

geometries using CNT of different diameters and GNR of various widths to obtain 

one dimensional or two dimensional structures could lead to exciting developments. 
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7. Outlook  

 
The physics of low dimensional systems is undergoing an intense activity both 

experimentally and theoretically. This thesis focuses on particular aspects of few 

nanosystems. So the question is where do we expect this field to move? A difficult 

question indeed!! 

The systems examined here are clusters, graphene, graphane and GNR inside 

CNT. Beyond these lie many exotic nanosystems such as clusters on surfaces, two 

dimensional boron nitride sheets (BNC), defects and impurities in graphene, magnetic 

clusters, biomolecules and many more. The advent of nanoscience has given a boost 

to the physics of nanoclusters and nanosystems. There are vast applications of these 

nanosystems in the areas including spintronics, sensors, tiny binary alloys and many 

more.  

The first phase of the investigations involves the zero temperature properties, 

stability, bonding etc. Further, the calculations can be extended to incorporate the 

applications of these novel nanosystems. Lot of work has been carried out on free 

clusters so far. Such clusters when deposited on surfaces show interesting properties. 

‘Clusters on surfaces’ are particularly important in the area of catalysis. Cluster 

assembled materials on surface are expected to show different mechanical, chemical 

and magnetic properties. We expect some progress in this area. 

The problem of obtaining stable GNR and H-GNR by encapsulation with CNT 

is still partially addressed in this work. The stability of 2-3 hexagons wide GNR is not 

examined in the present work. The typical width of GNR used in applications is of 

few nanometers and hence it is important to test their stability in CNT. Apart from 

GNR, there is possibility of designing new composite materials where stuffing CNT 

with quasi 1D material can yield desired properties. Such possibility will be driven by 

availability of new experimental work. 

 Apart from graphene, there is also emerging 2D materials such as Boron 

nitride sheets (BN sheets) exhibiting conducting properties. The transport 

measurement in these 2D materials as well as GNR based problems is still an open 

area to work. Our work is limited to the calculation of density of states which simply 

predicts the conducting nature but the actual conductivity calculations with graphene 
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based materials is a challenging task. Graphene has been investigated in various areas 

such as optoelectronic devices; spin transport on graphene grown on SiC, chiral 

superconductivity in doped graphene, graphene FET, graphene oxide films. 

Indeed, the field of graphene and graphene based nanomaterials is exploding 

and we expect immense activity in the next few years. It goes without saying that this 

is a paradigm shift towards ‘Nano’. 
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