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Preface

What is this book about? This book is about the programming language and environment
called R. This is a self-learning book for those who like to learn a programming language by
solving problems.

The form and content of this book is motivated by the following singleton “data” and the
highly biased “inference” that was forged from it: When I ran into R for the first time, all that
I was told was <-, c, seq, :, and plot. The rest was left to me to learn by myself, through
guesswork, trial and error, and my own mistakes. This worked because, I believe, there were
problems that I needed to solve using R rather quickly. As such, the emphasis was naturally
on learning only the bare essentials strictly on a need basis. Contrary to what common sense
told me back then, this helped me learn R rather quickly. Now, the hope is that this singular
“experiment” is replicable.

The subtitle of this book is clearly indebted to the far deeper book How to solve it by
mathematician G. Polya, and the book How to solve it by computer by R. Geoff Dromey.

Death by R. The book assumes some minimal familiarity with the R programming language:
Syntax, basic data types (numeric, integer, logical, and character), common container
types (vector, matrix, data.frame, and list), assignment, loops, conditionals, functions, etc.
Some familiarity with programming in general will be a plus. The learner is also assumed to
know how to find information about R; e.g., through the R help system (help, ?, help.search,
??, etc.), cran, trial and error, intelligent guesswork, big brother Google, asking a friend, asking
a foe, etc. This is the unwritten death-by-R prequel to this book.

Life thereafter. With this background, this book tries to expose the learner to more of R
through R codes that embody computational solutions to problems. This is the resurrection
and redemption part, that is, life after death-by-R.

How to use this book? Like any art that is worth investing time and effort into, program-
ming cannot be learnt theoretically just by reading books; it needs to be learnt through one’s
own mistakes. Hands-on exploration and practice are thus of paramount importance to this
self-learning approach. Essential skills to be learnt include turning an algorithm into code from
its description (plain-english, pseudocode, or mathematical), and tracing causality in the flow
of computation.

Perhaps the best way to use this book as an aid to learning R would be to try solving a
problem oneself first – at least partially, and only then look at the solution or solutions presented.
As with any programming language, there can be many routes – good, bad, or ugly – to reach
the same end goal. So, by all means, your solution to a problem may very well turn out to be
a better one than the ones presented. A comparative study of different solutions, programming
styles, and algorithmic thinking styles often leads to better understanding of a programming
language, and offers better insight into programming in general.

The internals of the R codes presented here are, by and large, left for the reader to under-
stand and assimilate with the help of interspersed comments, and through the learner’s own
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Preface

resourcefulness in finding information about new (or old) features of R that (s)he may discover
occasionally.

There is no particular order to the problem included here, nor have they been ranked by
their levels of difficulty. Exercises are sometimes stated imperatively; at other times, they are
left half-stated with the view that a sketch is a better stimulant to imagination than a perfected
painting.

Copy-paste. If you copy-paste R codes from this pdf book, manual verification of the pasted
codes may be necessary for at least two reasons:

• LATEX (or the listings package) often replaces plain-text ascii quote characters with
alternate quote characters. This will cause problems in R if pasted without manual curat-
ing.

• LATEX (or the listings package) may have introduced additional spaces in the codes.
These may or may not cause syntax errors, but it would be prudent to verify the copy-
pasted codes.

Coding style.

• The style of problem-solving here is influenced by ideas and viewpoints related to top-
down design and stepwise refinement. Programming style, by and large, is closer to the
procedural-imperative end of the spectrum. Maxims that have influenced the program-
ming style in this book include, e.g., Programs must be written for people to read, and only

incidentally for machines to execute, and The purpose of computation is insight, not numbers.

• The occasional practice in this book of putting opening braces ‘{’ on a separate line is
intended to bring out the structure of the code better. This practice is not universally
accepted. If not used with care, it may cause unintended syntax errors or side effects in
R.

• I take the view that the purpose of a function is twofolds: avoiding code repetition, and
encapsulating a computational element that can be used outside of the context in which
it was encountered. As such, the primary channels of communication between a function

and the caller environment should be the input arguments and the return value, and not
global variables. For the same reason, direct input/output, especially to the screen, should
be avoided except for critical error conditions, or when the purpose of the function is
input/output. Error-handling is done, by and large, via stopifnot.

• Often, the value of one expression (e.g., a function call) is fed to another through nested
expressions. This makes it crisp and sometimes efficient, but perhaps a bit difficult to
read and understand for a beginner. The way to understand what such nested expressions
lead to is to get the expressions evaluated starting from the innermost. Essentially, this
is the breaking-down-the-apparent-complexity-of-a-nested-expression approach to under-
standing nested expressions.

• End-of-function calls to return can often be redundant in R. Even when redundant,
explicit return calls are used for the sake of clarity.

• For graphics, I have (mostly) used the bare-basics graphics package. Many other packages
for producing more sophisticated or special-purpose graphics exist on cran. This exercise
is, however, best left to the needy learner for the occasion when (s)he needs those special
features most desperately.
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The death-by-R graphic

p r o b l e m

How might one re-create the death-by-R title page graphic for this book as faithfully as possible?

R

a p p r o a c h / e s

The overlaid dotted lines in the graphic above should help get the proportions right. Color of
the vertical noose, as well as the color, placement, rotation, font and size of the dead R are left
to guesswork and trial-and-error.

p o s s i b l e s o l u t i o n / s

It should not be much of a surprise that the following is the exact code that produced both the
death-by-R graphics:
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The death-by-R graphic

pdf( ’death -by -R.pdf’, width = 7, height = 10, paper = ’special ’, useDingbats = F )

plot.new()

old.par <- par( mar = rep( 0, 4 ) ) # save the original plot settings

plot.window( xlim = c( 0, 0.7 ), ylim = c( 0, 1 ) )

rect( xleft = c( 0, 0, 0.1, 0.55 ),

ybottom = c( 0, 0.1, 0.9, 0.6 ),

xright = c( 0.7, 0.1, 0.6, 0.6 ),

ytop = c( 0.1, 1, 1, 0.9 ),

density = -1, col = c( rep( ’gray40 ’, 3 ), ’coral’ ), border = ’white’ )

text( 0.56, 0.505 , ’R’, srt = -30, family = ’mono’, cex = 20 )

# overlaid grid for the second death -by-R figure

# abline( v = 0.1 * ( 0:7 ), h = 0.1 * ( 0:10 ), lty = 2, lwd = 1, col = ’gray ’ )

par( old.par ) # restore plot settings: redundant here , but generally a good practice

dev.off()
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Counting people from handshakes

p r o b l e m

Image courtesy: Wikipedia

A special interdisciplinary meeting is organized
where a few computer scientists and some biolo-
gists are invited. First, the two groups meet sepa-
rately: Each person shakes hands with every other
person within only her/his own group. In other
words, computer scientists shake hands with com-
puter scientists, while biologists shake hands with
biologists. There are a total of 102 such hand-
shakes. After that, all computer scientists shake
hands with all biologists. There are a total of 108
such handshakes across the two groups. How many
computer scientists attended the meeting?

a p p r o a c h / e s

Formulate the problem mathematically first. This should suggest way (or ways) of approaching
and solving the problem computationally.

p o s s i b l e s o l u t i o n / s

Formulation. Following the standard mathematical practice of pretending to know the un-
known by naming it, let us suppose there are n computer scientists and m biologists. Then the
description above tells us that there were(

n

2

)
+

(
m

2

)
= 102 within-group handshakes, and (1)

nm = 108 across-group handshakes. (2)

Here,
(
k
2

)
= k(k − 1)/2, the number of distinct pairs in a group of size k. The two equations

above need to be solved for positive integer values of n,m. The two equations are symmetric
in n and m, which means that we expect to see even number of solution pairs (n,m). Let us
assume that the two equations are solvable; i.e., they do have positive integer solutions for n,m.

Solution 1: pure brutality. Let us define an R function that computes the LHSs of the
two equations above given n and m, and use this to arrive at the correct values of n,m compu-
tationally.

handshakes <- function( n, m )

{

# enforce assumptions
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Counting people from handshakes

stopifnot( length( n ) == 1, n == as.integer( n ), n > 0,

length( m ) == 1, m == as.integer( m ), m > 0 )

return( c( choose( n, 2 ) + choose( m, 2 ), n * m ) )

# [1]: within -group , [2]: across -group.

}

k <- 108 # natural upper bound on n and m thanks to the second equation

for ( n in 1:k ) # brutal search through double loop

for ( m in 1:k )

if ( all( handshakes( n, m ) == c( 102, 108 ) ) ) cat( n, m, ’\n’ )

Solution 2: solution 1, but less brutal. In the above solution, the double loop is unneces-
sary, and computation scales as k2. In the enumerative solution below, computation scales as k
instead. Eliminate m from the two equations above; i.e., put m = 108/n into the first equation.
This gives us

n4 − n3 − 204n2 − 108n+ 1082 = 0. (3)

Positive integer solutions to this equation, together with m = 108/n, will give us solutions to
the original problem:

p <- function( n ) { return( n^4 - n^3 - 204 * n^2 - 108 * n + 108^2 ) }

k <- 108 # upper bound on both n and m thanks to the second equation

n <- 1:k # starting from 1 is important , because we want positive integer solutions

n.star <- which( p( n ) == 0 ) # these are the solutions for n; m is 108 / n

m.star <- 108 / n.star # the two solutions: c(nstar[1],mstar [1]), c(nstar[2],mstar [2])

This can be nicely visualized in the form of roots of the above polynomial:

nlim <- c( 1, max( n.star ) + 3 ) # for a better -looking plot

plim <- range( p( nlim [1]: nlim [2] ) )

plot( n, p( n ), xlim = nlim , ylim = plim ,

type = ’b’, axes = F, col = ’red’, pch = 21, bg = ’green’ )

abline( h = 0, v = n.star , lty = 2 ) # vertical lines: solutions for n

axis( 1 )

axis( 2, at = 0, tick = F, las = 1 )

axis( 3, at = n.star , tick = F )

Solution 3: less brutal of the second kind. Eq. 2 tells us that n,m are integer divisors
of 108; i.e., 1, 2, 3, 4, 6, 9, 12, 18, 27, 36, 54, or 108. Pairs of divisors that satisfy Eq. 2 are
(1,108), (2,54), (3, 36), (4,27), (6,18), and (9,12). Through trial-and-error, one can see that the
two pairs that satisfies Eq. 1 are (9,12) and (12,9). Below is a quick-and-dirty (Q&D) way of
finding all divisors of a positive integer, followed by a solution to the handshake problem:

k <- 108

divisors <- NULL; for ( i in 1:k ) if ( ( k %% i ) == 0 ) divisors <- c( divisors , i )

for ( n in divisors )

{

m <- k / n

if ( all( handshakes( n, m ) == c( 102, 108 ) ) ) cat( n, m, ’\n’ )

}

Recognizing and encapsulating a generic element of computation for reuse. In the
last approach, we ran into the problem of finding all divisors of a positive integer. Although
we solved it in a Q&D way, we recognize that this is a generic problem that may show up in
other contexts also. So it would be good to encapsulate this computation in the form of an
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Counting people from handshakes

R function that can be used elsewhere. Once debugged and validated thoroughly, this helps
avoid code replication and saves effort the next time this problem is encountered.

divisors <- function( k, as.pairs = FALSE )

{

# enforce assumptions about the argument k:

stopifnot( length( k ) == 1, k > 0, k == as.integer( k ) )

# http://rosettacode.org/wiki/Factors_of_an_integer#R

# handles the case length( k ) > 1 recursively.

# divisors , the inefficient way in R:

# d <- NULL; for ( i in 1:k ) if ( ( k %% i ) == 0 ) d <- c( d, i )

# divisors , the efficient way in R but with the same enumerative approach:

# d <- which( ( k %% ( 1:k ) ) == 0 )

# algorithmic improvements are certainly possible here.

# the simplest improvement limits the enumeration to sqrt(k) instead of k:

d <- which( ( k %% ( 1:sqrt( k ) ) ) == 0 ) # the other set of divisors is k/d.

# if nothing further needs to be done , then return the divisors in ascending order:

if ( !as.pairs ) return( c( d, rev( k / d ) ) )

# it may be useful to arrange divisors as pairs that multiply to k.

# a convenient representation for this is a 2-column matrix whose rows multiply to k:

return( matrix( c( d, k / d ), ncol = 2 ) )

}

Solution 3 revised. Using our functions divisors and handshakes, solution 3 can be
redesigned as follows:

hs1 <- function( d ) # this is a Q&D implementation; compare with hs2 further on.

{

if ( all( handshakes( d[1], d[2] ) == c( 102, 108 ) ) ) return( d )

return( NULL )

}

# one solution:

solution1 <- unlist( apply( divisors( 108, as.pairs = TRUE ), MARGIN = 1, hs1 ) )

# the other solution:

solution2 <- rev( solution1 ) # rev is preferable to solution1[length( solution1 ):1]

Solving a more general problem. Suppose the RHSs of Eq. 1 and 2 are allowed to take
arbitrary positive integer values; i.e.,(

n

2

)
+

(
m

2

)
?
= k1 (within-group handshakes) (4)

nm
?
= k2 (across-group handshakes) (5)

where k1, k2 are pre-specified positive integers, and the idea is to solve for n,m given k1, k2.
Not every pair of integers k1, k2 can be associated with positive integer values of n,m (which

is the reason for the notation
?
= for questioned equality). Suppose we represent the two integer

pairs (k1, k2) and (n,m) in the form of 2-component R vectors k and n * m respectively, then
one solution to the generalized problem, based on the revised solution 3 above, could be this:

hs2 <- function( nm, k )

{

# enforce assumptions about the arguments

stopifnot( length( k ) == 2, all( k == as.integer( k ) ), all( k > 0 ),

length( nm ) == 2, all( nm == as.integer( nm ) ), all( nm > 0 ) )

# return nm if the arguments nm and k satisfy Eq. 3 & 4.

if ( all( handshakes( nm[1], nm[2] ) == k ) ) return( nm )
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Counting people from handshakes

# proxy for no solution

return( NULL )

}

k <- c( 102, 108 )

nm <- unlist( apply( divisors( max( k ), TRUE ), MARGIN = 1, FUN = hs2 , k = k ) )

# the other solution is rev( nm )

k <- c( 51, 54 )

nm <- unlist( apply( divisors( max( k ), TRUE ), MARGIN = 1, FUN = hs2 , k = k ) )

# the other solution is rev( nm )

k <- c( 50, 54 )

nm <- unlist( apply( divisors( max( k ), TRUE ), MARGIN = 1, FUN = hs2 , k = k ) )

# no solution for this k1, k2; is.null( nm ) == TRUE

An alternate computational route: polynomial roots. Eq. 3 (or its more general variant
involving k1, k2) is a polynomial equation, and the solutions n are zeros/roots of the polynomial
on the LHS. All zeros/roots of a polynomial – real or complex – can be obtained using the
R function polyroot. Eq. 3 is a degree-4 polynomial, so it has 4 zeros/roots. Two of these
form the complex-conjugate pair −10 ±

√
8i, and the other two are the required zeros/roots

n = 9 and n = 12. Incidentally, both pairs of roots multiply to 108. This elegant approach can,
in principle, be used for any values on the RHS of Eq. 4 and 5 (see the generalized problem
below), including those for which there is no positive integer solution for n,m. However, this
approach can be somewhat involved computationally, because polyroot returns all zeros/roots
as complex numbers, and one needs to filter-out the correct (i.e., positive integer) zeros/roots
keeping in mind the idiosyncrasies of floating-point arithmetic1. An essential building-block
for this approach is checking whether the value of a complex number z is essentially positive
integer:

has.integer.value <- function( z, small = sqrt( .Machine$double.eps ) )

{

( Im( z ) < small ) & ( abs( Re( z ) - round( Re( z ), digits = 0 ) ) < small )

}

has.positive.integer.value <- function( z, small = sqrt( .Machine$double.eps ) )

{

has.integer.value( z ) & ( round( Re( z ), digits = 0 ) > 0 )

}

Given this, you are welcome to take this approach to its logical end.

1See also: David Goldberg, What Every Computer Scientist Should Know About Floating-Point Arith-
metic. ACM Computing Surveys, Pages 5–48, Volume 23, Issue 1, March 1991.
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π by dartboard

p r o b l e m

The celebrated number π can be estimated through darts thrown at random at a simplistic
dartboard (see figure). Simulate the experiment of throwing N random darts at this dartboard
so that they fill up the dartboard with uniform density. Using this, estimate the value of π.

A random sample of 100 dart hits.

a p p r o a c h / e s

Consider a square dartboard with a circle
inscribed inside (see figure). Suppose the
dartboard is defined by the corner points
(−1,−1), (−1,+1), (+1,+1), (+1,−1), and the
inscribed circle is the unit circle x2 + y2 = 1. A
random dart hit (x, y) inside the square can be
simulated by generating two uniform random num-
bers over [−1,+1]. Suppose you throw N darts on
this dartboard at random so that they fill up the
dartboard with uniform density. Out of these N hits,
suppose N◦ fall inside the circle (i.e., x2 + y2 ≤ 1).
Count these N◦ points inside. The ratio π̂N = 4N◦/N
should be a reasonable guess/estimate for π.

w h y w o u l d t h i s a p p r o a c h w o r k ?

By assumption, we are filling up the square dartboard with uniform density of dart hits, and
the process described above ensures this. Therefore, the proportion of darts hitting inside the
circle is (area of the circle) / (area of the square) = π/4. Therefore, for a sufficiently large
number of hits, (number of hits inside the circle) / (total number of hits) ≈ π/4. Inverting this,
one gets the above estimator for π.

Because π is different from a guess/estimate of π, we use the notation π̂N for the estimate.
Remember that π is a constant. In contrast, because this prescription involves randomness,
every new realization of N dart hits will, in general, give us a different N◦ and, hence, a
different estimate of π. Any single estimate π̂N we may care to look at is going to be different
from π. So should we believe what we get out of this prescription? We should check if it really
works.

One route to this goal is to take the formal probability theory route and prove results. The
other route is to explore the behaviour of this prescription using computation. Specifically, a
useful direction is to see if and how the estimates π̂N depend on N . Given the randomness, for
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π by dartboard

each N , it would be useful to work with some large number M of estimates π̂
(i)
N , i = 1, . . . ,M .

The purpose of this large number M , say M = 1000, is simply to make sure that any patterns in

the variability due to randomness are adequately captured in the collection π̂
(i)
N , i = 1, . . . ,M .

Given a large collection of numbers, how does one make sense out of it? Standard statistical
summaries should be of help here. For example, one could summarize a large collection of
numbers using 5-number summary (function quantile, or a visual representation called the
boxplot), or the histogram. These should help bring out the collective/average behaviour of
the prescription for different values of N .

p o s s i b l e s o l u t i o n / s

Code that produced the dartboard plot.

N <- 100 # number of dart hits

# a uniform random sample of hits

hits.x <- runif( N, -1, 1 )

hits.y <- runif( N, -1, 1 )

inside <- which( ( hits.x^2 + hits.y^2 ) <= 1 ) # hits inside the circle

outside <- setdiff( 1:N, inside ) # hits outside the circle

pdf( ’pi-dartboard.pdf’, useDingbats = F )

curve( sqrt( 1 - x * x ), from = -1, to = +1, ylim = c( -1, 1 ), asp = 1, bty = ’n’,

xaxt = ’n’, yaxt = ’n’, xlab = ’’, ylab = ’’, main = ’’, lwd = 2, col = ’gray’ )

curve( -sqrt( 1 - x * x ), from = -1, to = +1, ylim = c( -1, 1 ),

add = T, lwd = 2, col = ’gray’ )

# alternative way of drawing a circle: symbols ()

abline( h = c( -1, 1 ), v = c( -1, 1 ), lwd = 2, col = ’gray’ )

abline( h = 0, v = 0, lty = 2, lwd = 2, col = ’gray’ )

points( hits.x[inside], hits.y[inside], pch = 20, col = ’darkgreen ’ )

points( hits.x[outside], hits.y[outside], pch = 20, col = ’red’ )

dev.off()

Basic dartboard simulation set-up for one estimate π̂N of π.

N <- 100 # number of dart hits

hit.x <- runif( N, -1, 1 ) # a uniform random sample of hits from the

hit.y <- runif( N, -1, 1 ) # square (-1,-1) -(-1,+1) -(+1,+1) -(+1,-1)

n.inside <- sum( ( hit.x^2 + hit.y^2 ) <= 1 ) # count of hits inside the circle

pi.hat <- 4 * n.inside / N # one estimate of pi from these hits

A minimalistic variation. Any one quarter of the dartboard is enough to do this experiment.
The top right quarter of the above dartboard is convenient to use:

N <- 100 # number of dart hits

pi.hat <- 4 * sum( ( runif( N )^2 + runif( N )^2 ) <= 1 ) / N # one estimate of pi

Replicating the basic dartboard simulation M times for a fixed N .

# returns one estimate of pi from N dart hits

estimate.pi <- function( N ) { 4 * sum( ( runif( N )^2 + runif( N )^2 ) <= 1 ) / N }

N <- 10 # number of dart hits

M <- 1000 # number of replications of the experiment

pi.hat <- replicate( M, estimate.pi( N ) ) # M estimates of pi
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π by dartboard

Making sense out of a large pile of numbers.

op <- par( mfrow = c( 2, 1 ) )

# boxplot of estimates of pi

boxplot( pi.hat , horizontal = T, axes = F ); axis( 3 )

title( main = expression( hat( pi )[N] ), line = 3 )

title( xlab = paste( ’N = ’, N, ’ | M = ’, M, sep = ’’ ) )

# pi.hat density histogram overlaid with appropriate normal density

hist( pi.hat , breaks = ’FD’, freq = F, main = ’’,

xlab = expression( hat( pi )[N] ), col = ’gray’, border = ’white’ )

curve( dnorm( x, mean = mean( pi.hat ), sd = sd( pi.hat ) ),

from = min( pi.hat ), to = max( pi.hat ), col = ’red’, add = T )

abline( v = pi, col = ’blue’, lty = 2 )

axis( 3, at = pi , labels = expression( pi ), col = ’blue’, col.axis = ’blue’ )

par( op )

N-dependence of the π̂N distributions.

# number of replications of the dartboard experiment

M <- 1000

# how do the pi.hat distributions change with the number N of darts?

N <- c( 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000 )

# M estimates of pi for each N, resulting into a MXN matrix

pi.hat <- NULL

for ( n in N ) pi.hat <- cbind( pi.hat , replicate( M, estimate.pi( n ) ) )

# visualize pi.hat distributions as boxplots

boxplot( pi.hat , axes = F )

axis( 1, at = 1:ncol( pi.hat ), labels = N, las = 3 ); axis( 2 )

title( ylab = expression( hat( pi )[N] ), xlab = ’N’ )

abline( h = pi, col = ’red’ )

axis( 4, at = pi , labels = expression( pi ), col.axis = ’red’, col = ’red’, las = 1 )

# pi.hat distributions as histograms overlaid with appropriate normal densitites

op <- par( mfrow = c( 2, 5 ) )

for ( i in 1: length( N ) )

{

hist( pi.hat[,i], breaks = ’FD’, freq = F, col = ’gray’, border = ’white’,

main = paste( ’N =’, N[i] ), xlab = expression( hat( pi )[N] ) )

curve( dnorm( x, mean = mean( pi.hat[,i] ), sd = sd( pi.hat[,i] ) ),

from = min( pi.hat[,i] ), to = max( pi.hat[,i] ), col = ’red’, add = T )

abline( v = pi, col = ’blue’, lty = 2 )

axis( 3, at = pi , labels = expression( pi ), col = ’blue’, col.axis = ’blue’ )

}

par( op )

How would you interpret and understand these results?
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Scrambled eggs under gravity

p r o b l e m

Image courtesy: Batman

A hypothetical comic-book planet with normal Newto-
nian gravity happens to have an atmosphere consisting
of two entities, e and g, in the 1:2 proportion. The
two entities have the same mass, and behave as ideal
gases, and do not interact with each other in any way.
Create a two-dimensional snapshot of this atmosphere,
where one of the dimensions is the direction of gravity
(i.e., the vertical direction), and the other one is any
direction that is perpendicular to the vertical.

a p p r o a c h / e s

The density of an ideal gas under gravity varies with the height y (measured from the surface
upwards) as

ρ(y) = ρ0 exp

(
− mg

kBT
y

)
,

where m is the mass of a molecule of the ideal gas, g is the gravitational acceleration at the
surface, kB is the Boltzmann constant, T is the temperature of the gas, and ρ0 is the density at
the ground level, y = 0. Let us assume that the e and g entities forming the atmosphere of this
hypothetical comic-book planet do not interact with each other. Furthermore, let us assume
that the motions of the two entities can be best described by the adjective random. Under these
assumptions, we can say that the probability density function (pdf) for the entities constituting
the comic-book atmosphere is f(y) ∝ exp (−λy), where we have defined λ = mg/kBT . Apart
from the normalization constant, this form is same as that for the pdf of the exponential
distribution:

f(y) = λ exp (−λy) , y ≥ 0, λ > 0.

Further, the two entities do not interact with each other, i.e., they are independent , which
means that the above pdf describes both separately. So, to create a snapshot of the comic-
book atmosphere, all that one needs to do is:

1. Choose the number N of the e entities, say N = 50. The number of the g entities is 2N .
Choose some value for the constant λ, say λ = 1.

2. Generate N exponential random numbers (function rexp) to represent the heights of the
N e entities. Generate another 2N exponential random numbers to represent the heights
of the 2N g entities.
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Scrambled eggs under gravity

3. Generate 3N uniform random numbers (function runif) to represent the horizontal
coordinate of the 3N entities. Since gravity is assumed to be the uniform in the horizontal
direction, we expect a uniform distribution of the two entities along this direction.

4. Make a scatterplot using symbols e and g. Any other way of representing the two entities
will be equally good (or bad).

5. Try creating a similar 3D snapshot with x, y as the horizontal dimensions and z as the
vertical. You will need to explore an R package that provides functions for making 3D
scatterplots (e.g., rgl, misc3d, etc.).

p o s s i b l e s o l u t i o n / s

N <- 50 # number of the e-entities

xlim <- c( 0, 1 )

ylim <- c( 0, 3 )

op <- par( mfrow = c( 1, 3 ), bg = ’gray40 ’ )

for ( lambda in 1:3 ) # parameter for the exponential distribution

{

plot.new(); plot.window( xlim = xlim , ylim = ylim , asp = 1 )

abline( h = ylim[1], v = xlim , lty = 2 )

title( ylab = ’Height from the surface ’,

xlab = ’Horizontal coordinate ’,

main = parse( text = paste( ’lambda ==’, round( lambda , 3 ) ) ),

col.main = ’green’, col.lab = ’green’ )

# <<<

for ( i in 1:N )

{

text( runif( 1 ), rexp( 1, lambda ), ’e’,

srt = runif( 1, 0, 360 ), cex = 1.5, col = ’yellow ’ )

text( runif( 1 ), rexp( 1, lambda ), ’g’,

srt = runif( 1, 0, 360 ), cex = 1.25, col = ’white’ )

text( runif( 1 ), rexp( 1, lambda ), ’g’,

srt = runif( 1, 0, 360 ), cex = 1.25, col = ’white’ )

} # need this explicit loop because srt does not take a vector of values. so sad.

# >>>

}

par( op )

A small attempted twist in the above solution is giving the es and the gs a random rotation.
Unfortunately, this twist makes it necessary to use an explicit loop2, which makes it slow.
Without this twist, the inner for loop in the above solution could have been replaced with:

# <<<

points( runif( N ), rexp( N, lambda ), pch = 19, col = ’yellow ’ )

points( runif( 2 * N ), rexp( 2 * N, lambda ), pch = 19, col = ’white ’ )

# >>>

2Why?
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Hol(e)y polynomial doughnut

p r o b l e m

What is plotted in this figure are the complex roots
of all polynomials with degree between 1 and 11
and coefficients = ±1.

Polynomial roots have important roles to play in
diverse domains such as filter design for signal pro-
cessing (e.g., pole-zero plot), time series analysis
(e.g., autoregressive models, unit root, etc.), theo-
retical computer science (see, e.g., this), statistical
mechanics (e.g., Yang-Lee zeros), etc.

A degree-m polynomial p(x) = a0 + a1x + a2x
2 +

. . .+ amx
m has m zeros or roots, complex or real.

Given any degree-m polynomial p(x) = a0 + a1x+
a2x

2 + . . . + amx
m, find all its zeros/roots. Using

this, produce a plot similar to the one on the left.

a p p r o a c h / e s

The first part of the problem deals with polynomial zeros. The zeros/roots of a degree-m
polynomial p(x) = a0+a1x+a2x

2+ . . .+amx
m, i.e., solutions to the equation p(x) = 0, happen

to be the eigenvalues of the m×m matrix

Hp =


−am−1

am
−am−2

am
· · · − a1

am
− a0

am
1 0 · · · 0 0
0 1 · · · 0 0
...

... · · ·
...

...
0 0 · · · 1 0

 .

To get all the roots, compute this matrix for the given polynomial, and diagonalize it using
standard eigenvalue methods which are available on almost all computing platforms. This
approach can be computationally expensive for large m, but allows computing all the roots
including closely-spaced ones.

The second part of the problem, which is related to the above figure, deals with computing
zeros of all polynomials with degree between 1 and some M , and coefficients = ±1. For a fixed
degree m, the set of all polynomials with coefficients = ±1 has 2m+1 members. How does one
generate all these 2m+1 possible coefficient vectors? We notice that 2m+1 is also the number of
possible (m+ 1)-bit integers, and these integers contain all possible arrangements of 0s and 1s
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Hol(e)y polynomial doughnut

across these (m+1) bits. Therefore, taking the (m+1)-bit binary representations of all integers
between 0 and 2m+1− 1, and replacing all the 0s with −1s will give us all possible vectors with
±1 entries. All that remains now is to repeat this for all degrees m between 1 and M , and plot
the resulting zeros to create a plot similar to the one above.

w h y w o u l d t h i s a p p r o a c h w o r k ?

Here is the rationale for the first part. Let us work this out for m = 3, i.e., p(x) = a0 + a1x+
a2x

2 + a3x
3; the same argument can be extended to any m. The eigenvalue equation is −a2

a3
−a1

a3
−a0

a3
1 0 0
0 1 0

 t
u
v

 = x

 t
u
v


where x is an eigenvalue and (t, u, v)T is the corresponding eigenvector. The second and third
rows tell us that u = xv and t = xu = x2v. With these substitutions, the first row/equation
becomes

−a2
a3
x2v − a1

a3
xv − a0

a3
v = x3v

which implies
p(x) = a3x

3 + a2x
2 + a1x+ a0 = 0,

which is the condition for x to be a zero/root of the above polynomial.

p o s s i b l e s o l u t i o n / s

Suppose that the polynomial is specified as an R vector a consisting of the coefficients a[1]≡ a0,
a[2]≡ a1, . . ., a[m+1]≡ am. This convention for representing a polynomial is same as that for
the in-built function polyroot. For example,

a <- c( 108^2, -108, -204, -1, 1 ) # p(x) = x^4 - x^3 - 204 x^2 - 108 x + 108^2

for which the zeros/roots are 9, 12, 10± i
√

8. To solve his problem using the method above, we
need to compute the above matrix from a, and then use the built-in function eigen to get the
eigenvalues of the Hp matrix:

# degree of the polynomial

m <- length( a ) - 1

# enforce assumptions

stopifnot( m > 0 )

# compute the H matrix

Hp <- matrix( 0, m, m ) # m X m matrix filled with zeros

Hp[1,] <- - a[m:1] / a[m+1] # first row

Hp[( col( Hp ) + 1 ) == row( Hp )] <- 1 # first sub -diagonal

# compute eigenvalues of H, i.e., roots of the polynomial

roots <- eigen( Hp, only.values = T )$values

Recognizing and encapsulating a generic element of computation for reuse. Com-
puting all zeros/roots of a polynomial is a generic computation that may be required elsewhere.
So this is a good candidate for a stand-alone function – although redundant, because R already
provides the function polyroot:

polyroot.h <- function( a )

{

# this function computes all roots of the polynomial

# a[1] + a[2] * x + ... + a[length( a )] * x^( length( a ) - 1 )
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Hol(e)y polynomial doughnut

m <- length( a ) - 1 # degree of the polynomial

stopifnot( m > 0 ) # enforce assumptions

# compute the Hp matrix

Hp <- matrix( 0, m, m ) # m X m matrix filled with zeros

Hp[1,] <- - a[m:1] / a[m+1] # first row

Hp[( col( Hp ) + 1 ) == row( Hp )] <- 1 # first sub -diagonal

# compute and return all eigenvalues of Hp, i.e., roots of the polynomial

return( eigen( Hp, only.values = T )$values )

}

Recipe for a hol(e)y polynomial doughnut: bits and pieces.

bits1 <- function( x, length.out = 0 )

{

# Return the bits of a positive integer x, in the form of a vector.

# Computed bit vector is zero -padded to match the given output length.

# assumptions

stopifnot( length( x ) == 1, x == as.integer( x ), x >= 0,

length.out >= 0, length.out == as.integer( length.out ) )

# trivial case bypassed

if ( x == 0 ) return( rep( 0, max( length.out , 1 ) ) )

# compute bits

b <- NULL; while ( x ) { b <- c( b, x %% 2 ); x <- x %/% 2 }

# b[1] is LSB , appropriate # of zeros padded beyond MSB

return( c( b, rep( 0, max( 0, length.out - length( b ) ) ) ) )

}

Here is another implementation that relies on bitwise operations:

bits <- function( x, length.out = 0 )

{

# Return the bits of a positive integer x, in the form of a vector.

# Computed bit vector is zero -padded to match the given output length.

# This implementation relies on R integers being signed 32-bit integers.

# assumptions

stopifnot( length( x ) == 1, x == as.integer( x ), x >= 0,

length.out >= 0, length.out == as.integer( length.out ) )

# trivial case bypassed

if ( x == 0 ) return( rep( 0, max( length.out , 1 ) ) )

# compute bits

b <- bitwAnd( x, as.integer( 2^( 0:30 ) ) ); b[b > 0] <- 1

msb <- 32 - which( rev( b ) == 1 )[1] # most significant nonzero bit

# b[1] is LSB , appropriate # of zeros padded beyond MSB

return( b[1:min( 31, max( msb , length.out ) )] )

}

After all this effort of writing our own functions to get the bit representation of an integer,
it turns out that there is an in-built function called intToBits which does the same job3. In
hindsight, this should not be surprising given that the operation under consideration is so basic.
Here is how one might compare the performance of our two implementations and that of the
in-built intToBits:

# Below , while is used be in place of for/sapply , because for/sapply

# require actual lists/vectors to iterate over , and 2^e storage can

# exhaust the RAM large for large enough e.

for ( e in c( 5, 10, 15, 20 ) ) # n = 0, ..., 2^e - 1

3Thanks to Atish for pointing this out.

25

https://stat.ethz.ch/R-manual/R-devel/library/base/html/function.html
https://stat.ethz.ch/R-manual/R-devel/library/base/html/function.html
https://stat.ethz.ch/R-manual/R-devel/library/base/html/rawConversion.html
https://stat.ethz.ch/R-manual/R-devel/library/base/html/rawConversion.html


Hol(e)y polynomial doughnut

{

cat( ’e’, e )

t1 <- Sys.time()

n <- 0; while ( n < 2^e ) { bits1( n ); n <- n + 1 }

t2 <- Sys.time()

dt <- t2 - t1

cat( ’ bits1’, dt, attributes( dt )$units )

t1 <- Sys.time()

n <- 0; while ( n < 2^e ) { bits1( n ); n <- n + 1 }

t2 <- Sys.time()

dt <- t2 - t1

cat( ’ bits ’, dt, attributes( dt )$units )

t1 <- Sys.time()

n <- 0; while ( n < 2^e ) { as.integer( intToBits( n ) ); n <- n + 1 } # in -built

t2 <- Sys.time()

dt <- t2 - t1

cat( ’ intTobits ’, dt, attributes( dt )$units , ’\n’ )

}

Contrary to expectation, the performance of bits and bits1 is not that different. Not surpris-
ingly, the in-built intToBits is an order-of-magnitude faster than our two implementations. So
much for excessive self-reliance.

Yet another route4 to the sub-problem of generating all possible coefficient vectors with +1,−1
entries is to use expand.grid:

a <- expand.grid( rep( list( c( -1, 1 ) ), m + 1 ) ) # m-th degree polynomial

Each row of a is one of the 2m+1 coefficient vectors. While this approach might reduce the
overall coding effort, it entails a (formidable) memory cost of storing a 2m+1 × (m+ 1) array.

Complete recipe, finally. We need to plot complex roots of all polynomials with degree
between 1 and 11 and coefficients = ±1. How does one do this? For degree m, generating all
possible vectors of length m+1 with elements = ±1 is same as finding the binary representations
of all integers from 0 to 2m+1 − 1, and replacing 0s therein with −1s. This is where function

intToBits comes handy. Roots are computed using the in-built polyroot instead of our own
polyroot.h above.

m.min <- 13 # m.min < degree <= m.max; m.min > 0

m.max <- 13 # m.min < degree <= m.max; m.min > 0

# pdf( ’polynomial -roots.pdf ’, useDingbats = F )

plot.new()

op <- par( mar = rep( 0, 4 ) )

plot.window( asp = 1, xlim = c( -2, +2 ), ylim = c( -2, +2 ) )

abline( h = 0, v = 0, col = ’gray’, lwd = 0.5 )

symbols( rep( 0, 2 ), rep( 0, 2 ), circles = c( 1, 2 ),

inches = F, fg = ’gray’, lwd = 0.5, add = T )

for ( m in m.max:m.min )

{

cat( m ) # have patience for large m

t1 <- Sys.time()

# <<<

roots <- NULL

for ( i in 0:( 2^( m + 1 ) - 1 ) ) # loop over all possible +-1 coefficients

{

# z <- bits( i, m + 1 ) # our own slower implementation

z <- as.integer( intToBits( i )[1:( m + 1 )] ) # in -built , faster

4Thanks to Prajakta for pointing this out.
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z[z == 0] <- -1 # +-1 coefficient vector

roots <- cbind( roots , polyroot( z ) )

}

# >>>

t2 <- Sys.time()

dt <- t2 - t1

cat( ’’, dt, attributes( dt )$units , ’\n’ )

points( Re( roots ), Im( roots ), pch = 19, cex = 0.01, col = m.max - m + 1 )

# print( max( Mod( roots ) ) ) # --> 2 as m --> Inf?

}

par( op )

# dev.off()

Explicit loops can be quite costly in R. In the above code, the inner loop can be internalized
through a sapply call, as follows. Check for yourselves which one is faster.

# <<<

roots <- sapply( 0:( 2^( m + 1 ) - 1 ),

function( i )

{

# z <- bits( i, m + 1 ) # our own slower implementation

z <- as.integer( intToBits( i )[1:( m + 1 )] ) # in -built , faster

z[z == 0] <- -1

return( polyroot( z ) )

}

)

# >>>

Be it for or sapply, the price to pay is the storage for the vector 0:( 2^( m + 1 ) - 1 ), which
can exhaust all available memory for large enough m. This storage cost can be avoided with a
while loop, bringing things back to the square one:

# <<<

roots <- NULL; i <- 0

while ( i < 2^( m + 1 ) )

{

# z <- bits( i, m + 1 ) # our own slower implementation

z <- as.integer( intToBits( i )[1:( m + 1 )] ) # in -built , faster

z[z == 0] <- -1

roots <- cbind ( roots , polyroot ( z ) )

i <- i + 1

}

# >>>
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Square root, the ancient way

p r o b l e m

Babylonian tablet YBC 7289, circa 1800-1600 BC,

showing approximate value of
√

2. Image courtesy:

MAA.

The Babylonian method for computing the
square root of a positive real number S: Start
with any arbitrary x0 > 0, and iterate (n =
0, 1, . . .)

xn+1 =
1

2

(
xn +

S

xn

)
.

This method is also known as the divide-and-
average method.

An Indian method for computing the square
root of a positive real number S: Start with
any arbitrary x0 > 0, and iterate (n =
0, 1, . . .)

an =
S − x2n

2xn

xn+1 = xn + an +
1

2

a2n
xn + an A page from the Bakhshali manuscript. Date uncertain,

but considered to be no later than 12th century. Figure

3 in this article shows another page that illustrates the

calculation of square root. Image courtesy: Oxford

University.

Let us remember that both methods are stated here in the modern mathematical language and
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notation, and not the way the ancients might have chosen to express them. For both methods,
successive iterates xn get closer and closer to

√
S – eventually, but thankfully, reasonably

quickly. The second method involves more computation at every iteration, but converges at a
much faster rate than the first (here is a proof) – that is, in absence of finite-precision arithmetic
artifacts.

Some perspective should help here: The ancients probably used these methods using integer
arithmetic and for hand computation, and their intent was probably to obtain what we would
call rational approximations to square roots. In any case, they neither had the benefit of R, nor
had to cope up with the quirks of the modern-day finite-precision arithmetic.

a p p r o a c h / e s

Both methods are fixed-point iteration methods
which solve equations of the form x = f(x).

The circled points in the figure on the right are solu-
tions to the equation x = f(x). They are also solu-
tions of the equation x− f(x) = 0, i.e., zeros or roots
of the function g(x) = x− f(x).

Given an initial point x0, the method produces succes-
sive approximations x1, x2, . . . to the solution of this
equation, where

xi = f(xi−1) for i = 1, 2, . . . .

Iteration is terminated when

|xi − xi−1| ≤ ε or i ≥ N

for some pre-specified values ε and N .

For the Babylonian method, f(x) = (x+S/x)/2. For
the Indian method, f(x) = x+a(x)+a2(x)/2(x+a(x))
with a(x) = (S − x2)/2x.

Image courtesy: Wikipedia

Algorithm 1 Fixed-point iteration to solve an equation of the form x = f(x).

Require: function f , starting point x, maximum iterations N ≥ 0, closeness threshold ε > 0
1: i← 0
2: repeat
3: i← i+ 1
4: t← x
5: x← f(x)
6: until i = N or |x− t| ≤ ε

w h y w o u l d t h i s a p p r o a c h w o r k ?

The values of x that satisfy x = f(x) are called fixed points of the iterative process x 7→ f(x).
The notation x 7→ f(x) is a short-hand for the above iterative process; i.e., x1 = f(x0), x2 =
f(x1), . . .. For example, x = 0, 1 are the fixed points of the process x 7→

√
x. That is, 0 =

√
0

and 1 =
√

1. It is easy to see (e.g., with the help of a calculator, or R) that these two fixed
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points of x 7→
√
x have a very different character. 0 can be reached only if one starts at

0 – even a tiny deviation away from 0 drives the process away from 0. On the other hand,
taking repeated square root of any positive number except 0 will eventually take it to 1. 1 is
thus an attracting/stable fixed point, whereas 0 is a repelling/unstable fixed point. The above
method finds, depending on the initial value x0, one of the attracting fixed points of the process
x 7→ f(x), if there is any. What decides the nature (attracting or repelling) of a fixed point is
whether |f ′(x)| at the fixed point is larger than 1 (repelling) or less than 1 (attracting). The
theory of iterated functions can be found in text books on chaos and nonlinear dynamics – E.g.,
Chaos: an introduction to dynamical systems by K.T. Alligood, T.D. Sauer, and J.A. Yorke.

The reason why either method converges to
√
S is twofold: One, x = f(x) is equivalent to

x2 = S. Two,
√
S is the super-stable attracting fixed-point of the process x 7→ f(x) because

f ′(
√
S) = 0. Any starting value x0 > 0 converges to

√
S under this mapping. However, the

rate of convergence depends on the initial value and the method.

Interestingly, if we use Newton’s method to solve x2 − S = 0, the form of Newton iteration
turns out to be the same as the Babylonian method. The Indian method, on the other hand,
is shown here to be equivalent to performing two consecutive iterations of the Newton method
for the same problem.

(More generally, Newton’s method can be thought of as fixed-point iteration for the process
x 7→ x− f(x)/f ′(x).)

p o s s i b l e s o l u t i o n / s

Some visualization first.

S <- 125348 # need square root of S

f.babylonian <- function( x, S ) { return( 0.5 * ( x + S / x ) ) }

f.indian <- function( x, S )

{

a <- function( x, S ) { 0.5 * ( S - x^2 ) / x }

return( x + a( x, S ) + 0.5 * a( x, S )^2 / ( x + a( x, S ) ) )

}

xlim <- c( 0.1, 2 ) * sqrt( S )

ylim <- c( 0, max( f.babylonian( xlim[1], S ), f.indian( xlim[1], S ) ) )

# pdf( ’square -root.pdf ’, useDingbats = F )

op <- par( lwd = 2, bg = ’gray’ )

curve( f.babylonian( x, S ), from = xlim[1], to = xlim[2], n = 501,

bty = ’n’, ylim = ylim , ylab = ’y’, col = ’darkgreen ’ )

text( 1.2 * xlim[1], f.babylonian( xlim[1], S ),

expression( y == ( x + S / x ) / 2 ),

pos = 4, col = ’darkgreen ’, cex = 1.3 )

curve( f.indian( x, S ), from = xlim[1], to = xlim[2], n = 501,

bty = ’n’, ylim = ylim , ylab = ’y’, col = ’white ’, add = T )

text( xlim[1], f.indian( xlim[1], S ),

expression( y == x + a(x) + a^2 * (x) / 2 ( x + a(x) ) ),

pos = 4, col = ’white’, cex = 1.3 )

abline( v = sqrt( S ), lty = 3 )

axis( 3, at = sqrt( S ), label = expression( sqrt(S) ), cex.axis = 1.3 )

abline( c( 0, 1 ), col = ’darkorange ’ )

text( xlim[2], 1.1 * xlim[2], ’y = x’, pos = 2, col = ’darkorange ’, cex = 1.3 )

title( main = paste( ’S =’, round( S, 10 ) ), line = 3 )

par( op )
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# dev.off()

Fixed-point iteration. Because fixed-point iteration has a utility outside of the present
context, it is best implemented in the form of a standalone function. Below is a C-like imple-
mentation (along the lines of the function newton implemented elsewhere in this book).

fpi <- function( x0, f, ..., trace = F, eps = .Machine$double.eps , max.iter = 50 )

{

i <- 0

x <- x0

done <- ( i >= max.iter )

x.trace <- if ( trace ) x else NULL

while ( !done )

{

i <- i + 1

t <- x

x <- f( x, ... )

done <- ( i >= max.iter ) || ( abs( t - x ) <= eps ) || !is.finite( x )

if ( trace ) x.trace <- c( x.trace , x )

}

# attach additional information to the object being returned:

attr( x, ’trace ’ ) <- x.trace

attr( x, ’success ’ ) <- ( abs( t - x ) <= eps ) & is.finite( x )

return( x )

}

Square root, the Babylonian way.

# square root of a number the Babylonian way

S <- 336009 # need square root of S

S <- 125348 # need square root of S

# the function defining fixed -point iteration

f <- function( x, S ) { return( 0.5 * ( x + S / x ) ) }

# different starting values

s1 <- fpi( 0.5 * ( 1 + S ), f, S = S, trace = T )

s2 <- fpi( 1, f, S = S, trace = T )

s3 <- fpi( .Machine$double.eps , f, S = S, trace = T, max.iter = 1000 ) # slow

# examine the computed square roots and the traces to full precision

oo <- options( digits = 16 )

print( sqrt( S ) ); print( s1 ); print( s2 ); print( s3 )

options( oo )

# tempting , but pointless , to create another function for the square root

#

# sqrt.babylonian <- function( x )

# {

# stopifnot( length( x ) == 1, x >= 0 )

# if ( ( x == 0 ) || ( x == 1 ) ) return( x )

# return( fpi( 0.5 * ( 1 + x ), function( t, u ) { 0.5 * ( t + u / t ) }, u = x ) )

# # for faster convergence , the initial guess could perhaps be improved upon

# }

Square root, the Indian way.

# square root of a number the Indian way

S <- 336009 # need square root of S

S <- 125348 # need square root of S

# the function defining fixed -point iteration
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f <- function( x, S )

{

a <- 0.5 * ( S - x^2 ) / x

return( x + a + 0.5 * a^2 / ( x + a ) )

}

# different starting values

s1 <- fpi( 0.5 * ( 1 + S ), f, S = S, trace = T )

s2 <- fpi( 1, f, S = S, trace = T )

s3 <- fpi( .Machine$double.eps , f, S = S, trace = T, max.iter = 1000 ) # slow

# examine the computed square roots and the traces to full precision

oo <- options( digits = 16 )

print( sqrt( S ) ); print( s1 ); print( s2 ); print( s3 )

options( oo )

Convergence characteristics. A comparison of the convergence of the two methods (Baby-
lonian, Indian) under identical conditions (i.e., same S, same starting guess, same termination
criteria) might reveal occasional suprises despite formal proofs. The reason is that exact proofs
rarely consider the rounding error which is omnipresent in finite-precision arithmetic. How the
rounding behaviour behaves depends on the details of computation and implementation.

A functional approach. An elegant way of implementing fixed-point iteration is through the
functional programming features in R; specifically, using the function Reduce. An example on
the help page for Reduce shows how to implement a fixed number of iterations of the Babylonian
method.
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Graphics with granddaddy

p r o b l e m

Image courtesy: Wikipedia

“We might call [the Euclidean algorithm] the granddaddy of

all algorithms, because it is the oldest nontrivial algorithm that

has survived to the present day.” – Donald Knuth, The Art

of Computer Programming, Vol. 2: Seminumerical Algorithms,

2nd edition (1981), p. 318.

This exercise is about two interesting graphics that can
be produced with granddaddy: (A) coprime/relative
prime pairs (a, b), and (B) the number of steps/iter-
ations of the algorithm for each integer pair (a, b). In
either case, a, b are both between 0 and some integer n.
The resulting (n+1)× (n+1) matrices have interesting
structure that can visualized in the form of color-coded
images.

a p p r o a c h / e s

Granddaddy is too well-known and should not need any introduction. Here is the pseudocode
for the division variant of the algorithm: Similar bare-basics implementations of the algorithm

Algorithm 2 Euclid’s algorithm

1: function gcd(a, b) . Compute gcd of a and b

2: while b 6= 0 do . a is the gcd if b is 0

3: r ← a mod b
4: a← b
5: b← r
6: end while
7: return a
8: end function

(such as the variants described here) are straightforward in R. Small tweaks are required to
deal with end-cases (a = 0 or b = 0), assumptions (any integers or positive integers), and for
counting steps to convergence (required for exercise (B) above). For the exercise (A) above,
testing if two integers a, b are coprime/relative prime is same as checking whether the GCD of
a, b is 1 or not.

Computation for either exercise has the structure of a double loop over a, b. The key to speed
is accomplishing this part in R without the use of explicit loop structures. Visualize these two
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matrices using an appropriate R function (find it!).

As an additional twist, you can compute the coprime fraction, i.e., the ratio of the number of
coprimes in the set {(i, j), 0 ≤ i, j ≤ n} to the size of this set, i.e.,

f(n) =
# of coprime pairs in the set {(i, j), 0 ≤ i, j ≤ n}

size of the set {(i, j), 0 ≤ i, j ≤ n}
,

plot it as a function of n, and try to find information about its interpretations and deeper
mathematical connections.

p o s s i b l e s o l u t i o n / s

Portraits of granddaddy.
The division version of Euclid’s algorithm:

gcd.d <- function( a, b )

{

# GCD of two arbitrary integers:

# division version of Euclid ’s algorithm

# Algorithm A in Knuth , TAoCP -II (1981) , p.320

# assumptions

stopifnot( length( a ) == 1, a == as.integer( a ),

length( b ) == 1, b == as.integer( b ) )

# bypass special cases (Knuth , TAoCP -II (1981) , p.316)

if ( b == 0 ) { attr( a, ’steps’ ) <- 0; return( abs( a ) ) }

if ( a == 0 ) { attr( b, ’steps’ ) <- 0; return( abs( b ) ) }

# see comments at the beginning of

# Algorithm A in Knuth , TAoCP -II (1981) , p.320

a <- abs( a ); b <- abs( b )

# count of steps to convergence

i <- 0

# the core Euclidian algorithm

while ( b != 0 ) { r <- a %% b; a <- b; b <- r; i <- i + 1 }

# attach additional information to the value being returned

attr( a, ’steps ’ ) <- i

return( a )

}

The subtraction version of Euclid’s algorithm:

gcd.s <- function( a, b )

{

# GCD of two integers:

# subtraction version of Euclid ’s algorithm

# https://en.wikipedia.org/wiki/Euclidean_algorithm#Implementations

# assumptions

stopifnot( length( a ) == 1, a == as.integer( a ),

length( b ) == 1, b == as.integer( b ) )

# bypass special cases (Knuth , TAoCP -II (1981) , p.316)

if ( b == 0 ) { attr( a, ’steps’ ) <- 0; return( abs( a ) ) }

if ( a == 0 ) { attr( b, ’steps’ ) <- 0; return( abs( b ) ) }

# see comments at the beginning of

# Algorithm A in Knuth , TAoCP -II (1981) , p.320

a <- abs( a ); b <- abs( b )

# count of steps to convergence

i <- 0
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# subtraction version of the Euclidian algorithm

while ( a != b ) { if ( a > b ) { a <- a - b } else { b <- b - a }; i <- i + 1 }

# attach additional information to the value being returned

attr( a, ’steps ’ ) <- i

return( a )

}

The division version requires a much smaller number of iterations/steps to converge, whereas
the subtraction version involves simpler computation at every iteration/step. More portraits of
granddaddy (e.g., the extended Euclid algorithm) can be found in contributed R packages.

Visualizing coprimes.

# test if two integers are coprime

#

is.coprime <- function( a, b, gcd = gcd.d ) { return( gcd( a, b ) == 1 ) }

# n below defines the integer lattice [0,n] X [0,n] that will be scanned

#

n <- 11

# sapply () used below is much faster than an explicit loops.

# further performance improvement is possible if we use the

# fact that is.coprime(a,b) == is.coprime(b,a).

#

coprimes <- sapply( 0:n,

function( a )

{

sapply( 0:n, function( b ) { is.coprime( a, b ) } )

}

)

# visualize

#

image( 0:n, 0:n, coprimes , asp = 1, axes = F, col = c( ’white’, ’black’ ),

xlab = ’a’, ylab = ’b’, main = ’Coprime Pairs’ )

axis( 1, at = pretty( 0:n ), line = 1 )

axis( 2, at = pretty( 0:n ), line = 1 )

dev.copy( pdf , ’coprime -pairs.pdf’, useDingbats = FALSE )

dev.off()

Visualizing steps to convergence.

# Count steps to convergence of Euclid ’s algorithm.

# Any of the two implementations can be supplied through the argument gcd.

#

steps.gcd <- function( a, b, gcd = gcd.d ) { attr( gcd( a, b ), ’steps ’ ) }

# n below defines the integer lattice [0,n] X [0,n] that will be scanned

#

n <- 397

# convergence behaviour of gcd.d() and gcd.s() can be different; try both.

#

gcd <- gcd.s

gcd <- gcd.d

# sapply () used below is much faster than an explicit loops.

# further performance improvement is possible if we use the

# fact that is.coprime(a,b) == is.coprime(b,a).

#

steps <- sapply( 0:n,

function( a )

{

sapply( 0:n, function( b ) { steps.gcd( a, b, gcd ) } )

}
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)

# visualize

#

image( 0:n, 0:n, steps , asp = 1, axes = F,

xlab = ’x’, ylab = ’y’, main = ’# of step to compute GCD(x,y)’,

col = terrain.colors( diff( range( steps ) ) + 1 ), xlim = c( 0, 1.1 * n ) )

axis( 1, at = pretty( 0:n ), line = 1 )

axis( 2, at = pretty( 0:n ), line = 1 )

colorbar( c( 1.05 * n, 0 ), 0.05 * n, n, zrange = range( steps ),

col = terrain.colors( diff( range( steps ) ) + 1 ) )

The overall structure of the above code is same as that for the code for producing an image
of coprimes. The last expression adds a color legend to the plot. The x-range in the image is
already adjusted (through argument xlim) to accommodate the color legend. The arcane and
terse implementation of colorbar below relies on rect to draw rectangles:

colorbar <- function( bottomleft , width , height , col = rainbow( 101 ),

side = +1, zrange , horizontal = NULL , ... )

{

if ( is.null( horizontal ) ) horizontal <- ( width > height )

n <- length( col )

if ( !( side %in% c( -1, +1 ) ) ) side <- +1 # set membership; try help( ’%in%’ )

if ( horizontal )

{

x <- seq( bottomleft [1], bottomleft [1] + width , length = n + 1 )

y <- rep( bottomleft [2], n + 1 )

side <- 2 + side

rect( x[-( n + 1 )], y[-( n + 1 )], x[-1], y[-1] + height , col = col , border = F )

axis( side , pos = bottomleft [2] + ( side == 3 ) * height ,

at = seq( bottomleft [1], bottomleft [1] + width , length = 5 ),

labels = format( seq( zrange [1], zrange [2], length = 5 ), digits = 2 ), ... )

return ()

}

# vertical

x <- rep( bottomleft [1], n + 1 )

y <- seq( bottomleft [2], bottomleft [2] + height , length = n + 1 )

side <- 3 + side

rect( x[-( n + 1 )], y[-( n + 1 )], x[-1] + width , y[-1], col = col , border = F )

axis( side , pos = bottomleft [1] + ( side == 4 ) * width ,

at = seq( bottomleft [2], bottomleft [2] + height , length = 5 ),

labels = format( seq( zrange [1], zrange [2], length = 5 ), digits = 2 ), ... )

}

The above is a classic example of something that is made to work in an hour of need, with the
best of intent and effort, but left undocumented when that need was fulfilled. Notice the use
of negative indexing of vectors x and y to imply exclusion. More color pallets are available
in the grDevices package in the R standard library. Contributed packages provide additional
pallets; see, for example, function tim.colors in the package fields.

Coprime fraction and π. If you compute the coprime fraction f(n) defined earlier and plot
it as a function of n,

N <- 1:97 # scan integer lattices [0,n] X [0,n], where n takes values from N

coprime.fraction <- NULL

for ( n in N )

{

coprimes <- sapply( 0:n,

function( a )
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{

sapply( 0:n, function( b ) { is.coprime( a, b ) } )

}

)

coprime.fraction <- c( coprime.fraction , sum( coprimes ) / ( n + 1 )^2 )

}

plot( N, coprime.fraction , type = ’b’, bty = ’n’, xlab = ’n’,

ylab = ’Coprime Fraction ’, pch = 21, bg = ’coral ’ )

abline( h = 6 / pi^2, lty = 2, col = ’red’ )

axis( 4, at = 6 / pi^2, labels = expression( frac( 6, pi^2 ) ),

las = 1, col = ’red’, col.axis = ’red’ )

dev.copy( pdf , ’coprime -fraction.pdf’, useDingbats = FALSE )

dev.off()

then you might notice that it gets dangerously close to 6/π2 as n becomes larger and larger.
This is no coincidence; see, e.g., this or this. On a different note, this 6/π2 limit could be used
to concoct yet another procedure to estimate π. Happy exploration!
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Here, color represents the number of steps re-

quired for the Kaprekar routine to reach a fixed

point (0 or 6174) starting from integers n =

0, . . . , 9999. The axes are related to n, the base

(b = 10), and the number of digits (k = 4). “a

div b” represents the integer division of a by b,

“a mod b” stands for the integer remainder af-

ter integer division of a by b, and dxe means the

smallest integer ≥ x.

In 1949, D. R. Kaprekar discovered a procedure,
now known as the Kaprekar routine, which quickly
takes a 4-decimal-digit number (which has at least
two distinct digits) to the number 6174 in at most
7 steps of his procedure. Applying this procedure
to 6174 produces 6174. Numbers of the form dddd
all go to 0 in one step.

One step of the Kaprekar routine goes this way:
Choose any positive k-digit integer n1. If n1 has
fewer than k digits, then take the leading dig-
its to be 0 (i.e, consider 0s padded to n1 where
they don’t matter). Two integers n′1 and n′′1 can
be formed out of the k digits of n1; namely, by
sorting the digits in ascending and descending or-
ders. To get the next number n2 in this se-
quence, take the difference of n′1 and n′′1. That
is, n2 = max(n′1, n

′′
1)−min(n′1, n

′′
1). Now apply the

same routine to n2 to get n3, and so on. Any pos-
itive integer base other than 10 can also be used.

A variant of the routine omits the zero-padding
step above. Depending on k and b, the two variants
may show different behaviours.

One goal of this exercise is to produce a plot similar to the one above. An-
other goal is to computationally characterize the cyclic patterns produced
by the Kaprekar routine. For example, 4-digits integers produce two dis-
tinct cyclic patterns: 0000 (integers of the form dddd) and 6174 (all other
integers). Both these cycles have period = 1. Two-digit numbers produce
two distinct cyclic patterns: period-1 cycle 00 (integers of the form dd),
and the period-5 cycle 09, 81, 63, 27, 45 (all other integers). Fix the base
b (say, to 10), and the number of digits k (say, to 4). Run the Kaprekar
routine for each integer between 0 and bk − 1. Assume that this routine
produces, starting from any integer, a sequence of numbers that eventually
rolls into a cyclic pattern. Find out how many distinct cyclic patterns are
produced for the given combination of b and k.

D. R. Kaprekar, 1905-

86. Image courtesy:

Wikipedia
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a p p r o a c h / e s

Clearly, the three key computational elements of one Kaprekar step are: (a) disassemble an
integer into a sequence of k digits with respect to some positive integer base b > 1; (b) assemble
a sequence of k base-b digits into an integer; and (c) sort a sequence in ascending or descending
order. The last element (c) is available in most programming languages as a canned routine: In
R, this function is called sort. The Kaprekar routine repeats the Kaprekar step until a cycle
is detected. Cycles can be of length 1, 2, . . .. Here are the relevant pseudocodes:

Algorithm 3 Compute the base-b digits of a positive integer n

1: function int2digits(n, b)
2: Create an empty (i.e., length-0) vector d . an R vector

3: while n 6= 0 do
4: d← append(d, a mod b) . append next digit at the end

5: n← n div b . div stands for integer division; %/% in R

6: end while
7: return d . d1 :: b0, d2 :: b1, . . .

8: end function

Algorithm 4 Compute a positive integer n given an array d of its the base-b digits

1: function digits2int(d, b)
2: n← 0
3: for i← 1, . . . , length(d) do
4: n← n+ di × bi−1 . d1 :: b0, d2 :: b1, . . .

5: end for
6: return n
7: end function

Algorithm 5 Apply one Kaprekar step to integer n with at most k base-b digits

1: function kaprekar.step(n, b, k) . b: base, k: # of digits

2: d← sort(int2digits(n, b)) . assume length(d) ≤ k; i.e., 0 ≤ n < bk

3: Pad 0s at the end of d so that length(d) = k . To pad or not to pad? Explore!
4: return digits2int(d)− digits2int(reverse(d))
5: end function

p o s s i b l e s o l u t i o n / s

The previous four pseudocodes translate to the following four functions:

int2digits <- function( n, base = 10 )

{

# stopifnot( length( base ) == 1, base == abs( as.integer( base ) ), base >= 2,

# length( n ) == 1, n == abs( as.integer( n ) ) )

digits <- 0

if ( n > 0 )

{

digits <- NULL

while ( n )

{

digits <- c( digits , n %% base )

n <- n %/% base

}
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Algorithm 6 Apply the Kaprekar routine to integer n with at most k base-b digits

1: function kaprekar.routine(n, b, k) . b: base, k: # of digits

2: Create an empty (i.e., length-0) vector m . an R vector

3: while n is not found in m do . terminate when a cycle is detected

4: m← append(m,n) . append n at the end of m

5: n← kaprekar.step(n, b, k)
6: end while
7: m← append(m,n) . repeated value n for identifying periodic cycle and initial transient

8: return m . additional useful information may also be returned

9: end function

}

return( digits )

}

digits2int <- function( digits , base = 10 )

{

# stopifnot( length( base ) == 1, base == abs( as.integer( base ) ), base >= 2,

# all( digits %in% 0:( base - 1 ) ) )

if ( length( digits ) == 0 ) return( NA )

return( sum( digits * base^( 0:( length( digits ) - 1 ) ) ) )

}

kaprekar.step <- function( n, ndigits = 4, base = 10, pad = TRUE )

{

# One step of the Kaprekar routine

# http://mathworld.wolfram.com/KaprekarRoutine.html

# stopifnot( length( base ) == 1, base == abs( as.integer( base ) ), base >= 2,

# length( n ) == 1, n == abs( as.integer( n ) ) ) # sanity check

n <- sort( int2digits( n, base = base ) )

# stopifnot( length( n ) <= ndigits ) # sanity check

if ( pad ) n <- c( rep( 0, max( 0, ndigits - length( n ) ) ), n )

return( digits2int( n, base = base ) - digits2int( rev( n ), base = base ) )

}

kaprekar.routine <- function( n, ... )

{

# The Kaprekar routine

# http://mathworld.wolfram.com/KaprekarRoutine.html

orbit <- NULL

while ( !( n %in% orbit ) ) # terminate when a cycle is detected

{

orbit <- c( orbit , n )

n <- kaprekar.step( n, ... )

}

orbit <- c( orbit , n )

i <- which( n == orbit )[1]

return( list( orbit = orbit , transient.length = i - 1, cycle.start = i,

cycle.end = length( orbit ) - 1, cycle.period = length( orbit ) - i ) )

}

Notice that the function kaprekar.routine returns an R list that contains not only the
“orbit” of the given number n but also some additional information; namely, the start and
end of the cyclic part in the “orbit”, length of the initial transient part, and the cycle period.
The plot at the beginning of this exercise requires, for each integer n, the length of the initial
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transient. This can be done as follows:

base <- 10 # base

ndigits <- 4 # number of digits

pad <- TRUE # pad 0s to ensure exactly ndigits digits?

# Kaprekar orbits for each of the integers , with respect

# to given base and with the above number of digits

#

orbits <- t( sapply( 0:( base^ndigits - 1 ),

function( n ) { kaprekar.routine( n, ndigits , base , pad ) } ) )

# is.matrix( orbits ) == TRUE. Try: dim( orbits ), colnames( orbits )

#

# orbit periods: orbits[,’cycle.period ’]

# transient lengths: orbits[,’transient.length ’]

# ...

# lengths of the initial transients , arranged in a peculier fashion

#

n.rowcol <- ceiling( sqrt( base^ndigits ) )

transients <- matrix( nrow = n.rowcol , ncol = n.rowcol )

for ( i in 0:( nrow( orbits ) - 1 ) )

{

j <- 1 + ( i %% n.rowcol )

k <- 1 + ( i %/% n.rowcol )

transients[j,k] <- orbits [[i + 1,’transient.length ’]]

}

This is how the plot was made:

pdf( ’kaprekar.pdf’, useDingbats = F )

op <- par( mar = c( 3, 3, 1, 1 ) )

image( 0:( n.rowcol - 1 ), 0:( n.rowcol - 1 ), transients ,

# asp = 1, col = terrain.colors( length( unique( c( transients ) ) ) ),

asp = 1, col = 0:7,

axes = F, xlab = ’’, ylab = ’’ )

axis( 1, at = c( 0, n.rowcol - 1 ), line = 1, col.axis = ’gray50 ’, col = ’gray50 ’ )

axis( 2, at = c( 0, n.rowcol - 1 ), line = 1, col.axis = ’gray50 ’, col = ’gray50 ’ )

title( main = ’6174’, line = 0.3, col.main = ’gray50 ’ )

title( xlab = parse( text = paste( ’n ~~’, ’div’, ’~~ group(lceil , sqrt(’,

base , ’^’, ndigits , ’), rceil)’, sep = ’’ ) ),

line = 2, col.lab = ’gray50 ’, col = ’gray50 ’ )

title( ylab = parse( text = paste( ’n ~~’, ’mod’, ’~~ group(lceil , sqrt(’,

base , ’^’, ndigits , ’), rceil)’, sep = ’’ ) ),

line = 1.5, col.lab = ’gray50 ’, col = ’gray50 ’ )

par( op )

dev.off()

Characterizing the cyclic orbits for given number of digits k requires some more work. First, to
determine if two cycles are the same, one needs to arrange them in some standard form. Below,
the convention used arranges all cycles to start with the smallest value in the cycle. This way,
two cycles can be compared directly to determine if they are the same or not.

standard.cycle <- function( cycle )

{

# standardized cycle: rearranges a vector representing a cyclic pattern

# of numbers so that it starts at the minimal value along the cycle

i <- which( cycle == min( cycle ) )

return( cycle[c( i:length( cycle ), seq( 1, i - 1, length = i - 1 ) )] )

}

cycles <- apply( orbits , 1,

function( o )

{

standard.cycle( o$orbit[o$cycle.start:o$cycle.end] )
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}

) # extract the cycles from previously computed orbits

Finally, some more work gives us the unique cycles for a given number of digits k, together with
the integers n that converge to that cycle.

# find the unique set of standardized cycles , together

# with and the integers that converge to that cycle

#

is.in.list <- function( x, list )

{

if ( length( list ) == 0 ) return( FALSE )

any( sapply( list , function( l ) { all( x == l ) } ) )

}

which.in.list <- function( x, list )

{

if ( length( list ) == 0 ) return( integer( 0 ) )

which( sapply( list , function( l ) { all( x == l ) } ) )

}

cycles.unique <- list()

number.groups <- list()

k <- 0

for ( i in 1: length( cycles ) )

{

j <- which.in.list( cycles [[i]], cycles.unique )

if ( length( j ) == 0 )

{

k <- k + 1

cycles.unique [[k]] <- cycles [[i]]

number.groups [[k]] <- i - 1

}

else

{

number.groups [[j]] <- c( number.groups [[j]], i - 1 )

}

}

As k = 4 integers with at least two distinct digits go to the number 6174, all k = 3 integers
with at least two distinct digits go to the number 495. Interestingly, with 0-padding, all k = 2
integers (except those of the form dd) get locked into the period-5 cycle 9, 81, 63, 27, 45, 9, . . ..
More details can be found, e.g., here and here.

Performance considerations. Firstly, the above implementation stores all orbits. Sooner
or later, i.e., for sufficiently large k, this will surely become unwieldy. Secondly, for base-10
integers, the same procedure can be implemented using character operations, which should
make it faster:

kaprekar.step .10 <- function( n, ndigits = 4, pad = TRUE )

{

# Kaprekar step for base 10.

# sanity check

# stopifnot( length( n ) == 1, n == abs( as.integer( n ) ) )

# convert to character , separate digits , sort them

n <- sort( unlist( strsplit( as.character( n ), ’’ ) ) )

# sanity check

# stopifnot( length( n ) <= ndigits )

# pad zeros

if ( pad ) n <- c( rep( ’0’, max( 0, ndigits - length( n ) ) ), n )

# reassemble integers and return their difference

return( as.integer( paste0( rev( n ), collapse = ’’ ) )

- as.integer( paste0( n, collapse = ’’ ) ) )
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}
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Long live the Queens!
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All four conflict-free arrangements of 6
queens on a 6 × 6 chessboard

The problem of placing N queens on a N×N chessboard
so that they do not threaten each other is the celebrated
N -queens problem. For this problem, color of the queen
does not matter; they are all identical, highly territorial,
and equally powerful. Peace prevails in this world only
when the N queens do not see one another at all.

Turing award winner Niklaus Wirth used this problem to
illustrate a program design methodology called stepwise
refinement in his 1995 article Program Development by
Stepwise Refinement .

Try solving this problem in R using any approach, your
own or from literature. There can be different flavours
to this exercise: (A) find all the peaceful arrangements
of N queens on a N × N chessboard, or (B) find one
peaceful arrangement of queens as quickly as possible.

a p p r o a c h / e s

Representation. Recall that a chess queen exerts her influence along
the vertical, the horizontal, and the two diagonal lines that cross at the
her position on the chessboard. The vertical and horizontal constraints
can be fulfilled by ensuring that there is exactly one queen in any row
and in any column. Therefore, positions of theN queens can be specified
through a vector π of size N , where πi is the column index of a cell in the
ith row where a queen is placed – That is, (i, πi) are the (row,column)
indices of the queen in the ith row. See figure on the right: With
rows running horizontal and columns running vertical in the figure, this
configuration is π = (2, 5, 1, 3, 6, 4). This is a “hostile” placement, with
three queen pairs in conflict: These are at cell locations (1, 2) and (5, 6),
(2, 5) and (4, 3), and (3, 1) and (6, 4). Notice two things about this
representation: (1) i can also be taken as the index of a queen: “ith
queen” is same as “queen in the ith row”. (2) Possible placements are
permutations of 1, . . . , N (hence N ! in number).

1 2 3 4 5 6

1

2

3

4

5

6

*

*

*

*

*

*

In these chessboard plots,

“rows” are vertical and

“columns” are horizontal.
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Is a placement safe? How do we detect pairwise “collisions”, “conflicts”,
or “hostilities” in a particular placement? We only need to detect diagonal
collisions now, because vertical and horizontal collisions are already avoided
as explained above. Consider queens i and j with coordinates (i, πi) and
(j, πj) respectively. If they lie along the same anti-diagonal, then i + πi =
j + πj , implying i − j = −(πi − πj). If they lie along the same diagonal,
then i−πi = ±(j−πj), implying i−j = ±(πi−πj). Both these conditions
(i.e., diagonal or anti-diagonal collision) can be combined together as

|i− j| = |πi − πj |.

A placement is “safe” if it has no pairwise collisions. The following pseu-
docode expresses the essential logic of the safety check:

Algorithm 7 Check safety of a placement of N queens on a N ×N chessboard

1: function safe(p) . p is a permutation of 1, . . . , N representing a placement of queens

2: N ← length(p)
3: for i = 1, . . . , N do
4: for j = i+ 1, . . . , N do
5: if |i− j| = |pi − pj | then
6: return false . Placement is unsafe

7: end if
8: end for
9: end for

10: return true . Placement is safe

11: end function

Approach 1: Brute-force search. Because different placements of N queens are permuta-
tions of 1, . . . , N , the brute-force solution to finding all safe placements is to scan all these N !
permutations one by one, and select those that have no collisions. An algorithm that generates
permutations one-by-one in the lexicographic order is ideally suited for this approach.

Approach 2: Backtracking. Try solving this problem using R with the backtracking ap-
proach illustrated in Niklaus Wirth’s Program Development by Stepwise Refinement .

Approach 3: Finding one safe placement – quickly. This paper presents a heuristic
algorithm to find one safe placement in a fast fashion for very large N . This algorithm requires
identifying the queens that are in conflict with one another. We already have an algorithm to
check if a placement is safe. Some tweaking should lead to a way to identify queens in conflict.

p o s s i b l e s o l u t i o n / s

Is a placement safe? Below is an R-friendly implementation of the safety algorithm. At
the cost of additional but faster computation, this implementation internalizes the two costly
explicit loops through function outer:

n.hostile <- function( p )

{

# returns number of hostile queens pairs

n <- length( p ); stopifnot( setequal( p, 1:n ) ) # p should be a permutation of 1:n
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# 0.5 * for double counting over upper+lower triangle; - n for the diagonal.

0.5 * ( sum( abs( outer( p, p, ’-’ ) ) == abs( outer( 1:n, 1:n, ’-’ ) ) ) - n )

}

is.safe.placement <- function( p ) { return( n.hostile( p ) == 0 ) }

Approach 1: Brute-force search. Here is an R translation of a plain-English description
of an algorithm to generate permutations one-by-one in the lexicographic order:

next.perm <- function( p )

{

# Given one permutation p of numbers 1:n, this function generates the next permutation

# that is lexicographically the next permutation to p.

# If p is the last permutation length( p ):1, then this function returns NULL.

#

# Source: http://en.wikipedia.org/wiki/Permutation#Generation_in_lexicographic_order

n <- length( p ); stopifnot( setequal( p, 1:n ) ) # p should be a permutation of 1:n

# 1. Find the largest index k such that p[k] < p[k + 1].

k <- which( p[-n] < p[-1] )

# If no such index exists , the permutation is the last permutation.

if ( length( k ) == 0 ) return( NULL )

k <- max( k ) # largest index

# 2. Find the largest index l greater than k such that p[k] < p[l].

l <- k + max( which( p[-( 1:k )] > p[k] ) )

# 3. Swap the value of p[k] with that of p[l].

p[c( k, l )] <- p[c( l, k )]

# 4. Reverse the sequence from p[k + 1] up to and including the final element p[n].

return( c( p[1:k], rev( p[-( 1:k )] ) ) )

}

Below is an example of usage of this function. In this example, all permutations are stored
and returned – which is not a particularly happy prospect for large n:

all.perm <- function( n )

{

# this function returns all permutations of 1:n.

# it is intended only for illustrative purposes and for sufficiently small n.

# use with caution: n! grows very fast!

all.perm <- NULL

p <- 1:n # start with the lexicographically -first permutation

while ( !is.null( p ) )

{

all.perm <- rbind( all.perm , p ) # store it

p <- next.perm( p ) # get the next one in the lexicographic order

}

rownames( all.perm ) <- NULL

return( all.perm ) # rows of this matrix are the individual permutations

}

Fitting all the pieces together, here is the brute-force search for all safe placements of N queens
on a N ×N chessboard:

# n-queens problem: brute force search

next.safe.placement <- function( p )

{

if ( is.null( p ) ) return( p ) # nothing further to do

n <- length( p ); stopifnot( setequal( p, 1:n ) )

repeat
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{

p <- next.perm( p )

if ( is.null( p ) || is.safe.placement( p ) ) return( p )

}

return( NULL ) # no more permutations to be scanned

}

all.safe.placements <- function( n )

{

# use with caution; function intended for sufficiently small n

stopifnot( n == as.integer( n ), length( n ) == 1, n > 0 )

if ( n == 1 ) return( 1 ) # trivial case

p <- 1:n

QP <- if ( is.safe.placement( p ) ) p else NULL

while ( !is.null( p ) )

{

p <- next.safe.placement( p )

QP <- rbind( QP, p )

}

rownames( QP ) <- NULL

return( QP ) # rows of QP are the safe placements

}

Visualization. The first function below draws a N ×N chessboard:

draw.chessboard <- function( n, axes = F, xlabels = letters ,

col = c( ’coral’, ’white’ ), ... )

{

stopifnot( n == as.integer( n ), length( n ) == 1, n > 0 )

{ # << this extra pair of braces ensures that the if {} else {} block which ...

if ( n %% 2 )

{

oo <- options( warn = -1 ) # suppress warnings; they are expected for odd n

board <- matrix( rep( 0:1, ceiling( 0.5 * n^2 ) ), n, n )

options( oo )

}

else

board <- matrix( rep( c( rep( 0:1, 0.5 * n ), rep( 1:0, 0.5 * n ) ), 0.5 * n ),

nrow = n, ncol = n )

} # ... is broken up across lines for readability is parsed correctly >>

image( 1:n, 1:n, board , axes = F, col = col , xlab = ’’, ylab = ’’ )

box()

if ( axes )

{

axis( 1, at = 1:n, labels = if ( n <= length( xlabels ) ) xlabels [1:n] else 1:n,

tick = F, ... )

axis( 2, at = 1:n, tick = F, las = 1, ... )

}

}

The next one places N queens on it:

place.queens <- function( p, queen = ’\U265B’, ... ) # \U265B is Unicode for black queen

{

# assumption/s stated but not enforced:

# draw.chessboard( n ) has been invoked before calling this function

n <- length( p ); stopifnot( setequal( p, 1:n ) ) # p should be a permutation of 1:n

text( 1:n, p, queen , ... )

}
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